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ABSTRACT 

 

Variations of unique and tailored composite microstructures have been observed 

in nature and have served as templates for the development of new synthetic 

materials. Microstructures are studied in fish scales for their penetration resistance, 

in spider webs for energy absorption, and in seashells and bone for their strength and 

toughness. However, it has proven difficult to reproduce the properties found in 

natural materials, due to the interaction between the intricate structures at different 

length scales. Rather than attempting to replicate these materials (biomimetics), the 

focus of this work is to use a bio-inspired pattern generation algorithm to search for 

new topologies that outperform traditional composite structures due to their nature-

like design. The bio-inspired pattern generation algorithm employed in this research 

is known as the Gray-Scott model. This model was selected due to its unique ability 

to manufacture patterns that propagate with time, allowing the reinforcement volume 

fraction of the composite structure to be controlled. The model is capable of 

producing Turing patterns, propagating wave fronts, homogeneous oscillations, and 

chaos. Traditionally, Turing models have been primarily studied for their applications 

in morphogenesis and pattern development. However, this research extends the 

application of the Gray-Scott model by investigating the patterns as physical load 

bearing structures. A methodology was developed by which the patterns can be 

converted to structures, analyzed for a desired mechanical property, and optimized 

via Bayesian machine learning algorithms that yield an improvement of the average 

quality of structures produced by almost a factor of 10. 
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INTRODUCTION 

 

Nature contains a vast array of structures for various applications that have been 

optimized over millions of years. Evolution removes the weakest links by means of 

extinction while improving and adapting the top performing structures to meet the 

needs of the surrounding environment. For example, woodpecker beaks must be 

able to absorb energy, antlers must be tough, and seed coats must provide 

penetration resistance. The structures created in nature tend to contain combinations 

of mechanical properties that are inconceivable in current man-made materials. As a 

result, materials researchers have turned towards nature as a source of inspiration in 

a field of study known as biomimetics. This field is dedicated to analyzing and 

generating bio-inspired structures. As new manufacturing technologies such as 3D 

printing emerge, the replication of complex configurations such as those found in 

organic microstructures become attainable [1]. However, mimicking properties 

found in natural materials is challenging, and in some cases, nearly impossible. This 

is due in large part to the complex interaction between intricate structures that range 

in size from molecular to macroscopic [2]. As a result, while natural materials 

possess optimized properties, the current methods that involve exact replication of 

these structures are time consuming and often fail to recreate the properties 

synthetically [1, 2, 3]. Rather than investing time and resources into the study of a 

single organic structure, the focus of this work is to use a bio-inspired pattern 

generation algorithm, in conjunction with machine learning algorithms, to search 

for new biomimetic composite topologies.  

The bio-inspired pattern generation algorithm employed in this research is 

known as the Gray-Scott model. This model was selected due to its unique ability to 

grow patterns rather than have them instantly appear from random perturbations in 

the system [4]. Propagating patterns provide control over the reinforcement volume 

fraction typically encountered in composites. Initially, the model was created to 

analyze an isothermal system with self-sustaining chemical reactions in a 

continuously fed, well-stirred, open-tank reactor [5, 6, 7]. However, a study done by 

Pearson [8] revealed that in two-dimensions the model could generate patterns 

found in nature. The two-dimensional model utilized Turing’s theory that diffusion 

could cause a steady-state system to become unstable, thereby yielding a pattern 

[9]. The Gray-Scott model is categorized as a reaction-diffusion model, because 

two substances are allowed to interact and diffuse with one another [10]. Within the 

reaction-diffusion category, the model is known as the activation-depletion type, 

because the concentrations of the two interacting substances oppose one another 

[11]. The equations governing the change in chemical concentrations due to 

diffusion are given by 

 
𝜕𝑢

𝜕𝑡
= −𝑢𝑣2 + 𝐹(1 − 𝑢) + 𝐷𝑢∇2𝑢 (1) 

𝜕𝑣

𝜕𝑡
=  𝑢𝑣2 − (𝐹 + 𝑘)𝑣 + 𝐷𝑣∇2𝑣 (2) 

 



where u and v are the chemical concentrations, Du and Dv are the diffusion 

coefficients, F is the feed rate, and k is the kill rate [8]. As shown in Equations (1) 

and (2), chemical V is the activator, because the concentration of chemical V 

increases when chemical V is present. It can also be shown that chemical U is the 

substrate, because high concentrations of chemical V reduce the concentration of 

chemical U [11]. It is assumed that all variables are initially set as positive values. 

Linear stability analysis on the set of partial differential equations performed by 

Pearson and Mazin [8, 11] produced a phase diagram for the reaction. 

Homogeneous oscillations occur around the saddle-node bifurcation curve; Turing 

patterns, propagating wave fronts, and chaos occur around the Hopf bifurcation 

curve. 

The patterns produced by the Gray-Scott model, to date, have not been 

converted into structures for mechanical simulation. Prior to this study, the Gray-

Scott model has been primarily analyzed in the math and science fields to 

investigate various integration methods, Laplacian approximations, dynamic 

systems, and morphogenesis [12, 13, 14, 15, 16]. As a result, in this work we aim to 

prove that the biomimetic patterns produced by the Gray-Scott model can be 

transformed into structures that outperform traditional composites due to their 

nature-like design. Specifically, the target objective is to search for topologies that 

have an increased damage tolerance.  

Damage tolerance refers to the ability of a composite to maintain its strength 

and integrity even after structural damage has occurred. The main type of structural 

damage we aim to prevent in this study is crack propagation. The fiber-matrix 

interface area is a crucial component to arresting cracks in composite structures 

[17]. As the interfacial area per unit volume increases, so does the amount of energy 

that can be dissipated [18]. The interfaces act as obstacles that deflect growing 

cracks, thereby reducing the energy each time one is encountered. As a result, an 

increase in interfacial area per unit volume tends to correlate to an increase in 

damage tolerance. Therefore, the bio-like composite structures generated by the 

Gray-Scott model will be ranked and optimized based on their interfacial area. 

 

 

SIMULATION PROCEDURE 

 

The two-dimensional Gray-Scott model was implemented in Matlab with the 

same initial conditions and resolution used by Pearson [8]. As a result, a 2.5 x 2.5 

arbitrary unit reaction area was generated with an overlaying 256 x 256 Cartesian 

grid. A matrix for chemical U and a matrix for chemical V were created to describe 

the concentration of each chemical across the gridded area. The initial steady-state 

system was homogeneously filled with chemical U and then perturbed through the 

addition of chemicals U and V. Prior to any disturbance, the concentration of 

chemical U was 1 and the concentration of chemical V was 0 across the grid, 

placing the system in a trivial steady-state environment. A predetermined area in 

the middle of the grid was then perturbed to a concentration level of 0.5 for 

chemical U and 0.25 for chemical V. An additional perturbation of ±1% random 

noise was added to the system to break the initial square/rectangular symmetry.  

The system was then allowed to vary with a time step t of 1 according to the 

following equations [19, 20]. 



𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 + 𝑡(−𝑢𝑖,𝑗
𝑛 𝑣𝑖,𝑗

𝑛 2
+ 𝐹(1 − 𝑢𝑖,𝑗

𝑛 ) + 𝐷𝑢∇2𝑢𝑖,𝑗
𝑛 ) (3) 

𝑣𝑖,𝑗
𝑛+1 = 𝑣𝑖,𝑗

𝑛 + 𝑡(𝑢𝑖,𝑗
𝑛 𝑣𝑖,𝑗

𝑛 2
− (𝐹 + 𝑘)𝑣𝑖,𝑗

𝑛 + 𝐷𝑣∇2𝑣𝑖,𝑗
𝑛 ) (4) 

 

After each iteration n, Equations (3) and (4) were used to update the individual 

matrix values containing the concentrations of chemicals U and V using Euler’s 

Method, periodic boundary conditions, and the five-point finite difference 

approximation for the 2D Laplacian. The square lattice grid permits ℎ = ∆𝑥 =
∆𝑦 = 2.5/256, therefore, the Laplacian approximation can be written according to 

Equation (5) [19, 20]. 

 

∇2𝑤𝑖,𝑗
𝑛 =

𝑤𝑖+1,𝑗
𝑛 + 𝑤𝑖−1,𝑗

𝑛 + 𝑤𝑖,𝑗+1
𝑛 + 𝑤𝑖,𝑗−1

𝑛 − 4𝑤𝑖,𝑗
𝑛

ℎ2
(5) 

 

To generate different patterns, the feed rate, kill rate, diffusion coefficients, and 

amount of chemical V added to the system were randomly varied. The feed rate 

varied from 0 to 0.25 and the kill rate varied from 0 to 0.1 in order to encompass the 

full pattern generation region described by the reaction-diffusion phase diagram [8, 

11]. The diffusion coefficients varied from 0 to 2*10^-5 according to the maximum 

diffusion coefficient used by Pearson [8]. Finally, the amount of chemical V added 

to the system varied from an x and y grid length of 0 to 200 (or an area of 0 to 

40,000) in the middle of the overlaying 256 x 256 Cartesian grid. The adjustment of 

these six parameters yields an infinite ensemble of possible outcomes.  

Many of the generated patterns have a spatial component and/or a temporal 

component; the patterns tend to vary with time and/or space. The spatial component 

was suppressed by limiting the reaction area size to 2.5 x 2.5. To prevent the 

temporal patterns from evolving infinitely, a reinforcement volume fraction of 30% 

was implemented; the pattern ceases once it encompasses 30% ± 0.5% of the 2.5 x 

2.5 reaction area. Two other types of patterns that are not desirable include patterns 

that never meet the 30% requirement and homogeneous patterns. In order to bypass 

these, the evolution of the patterns cease when the concentration profiles no longer 

change with time or when the number of iterations exceeds 20,000. The patterns 

that meet the 30% reinforcement volume fraction requirement are converted to 

structures by analyzing the concentration value of chemical V across the grid 

according to Equation (6). 

 

𝑣 ≥ √𝐹,        𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (1)

𝑣 < √𝐹,              𝑚𝑎𝑡𝑟𝑖𝑥 (0)
(6) 

 

A new matrix, known as the shape matrix, was produced detailing the shape of 

the structure by assigning a 1 where the concentration of chemical V met the 

structure requirement and a 0 elsewhere. The requirement for the pattern to be 

considered a structure comes from a bifurcation diagram produced by Mazin [11] 

that was a function of the feed rate, kill rate, and concentration of chemical V. 

According to the diagram, a saddle-node bifurcation curve exists according to the 

equation 𝑣 = √𝐹. Above the curve the system may be stable, whereas below the 



curve the system is unstable unless 𝑣 = 0. Therefore, since the patterns of interest 

are primarily stable, they must appear above the saddle-node bifurcation curve. 

After the model produces a random structure, a fitness parameter is assigned. 

The purpose of this parameter is to determine how well the structure will perform in 

the desired application. As a result, in this study, the fitness parameter ranks the 

structures in order of damage tolerance. Characterization of the fitness parameter 

requires prior knowledge of how damage tolerance is increased in traditional 

composites. The previous section describes how a large interfacial area typically 

increases the damage tolerance. Therefore, the fitness parameter for this application 

is a scaled value of the total interfacial area between the structure and the matrix. In 

order to calculate the fitness parameter, the shape matrix was evaluated. Within the 

matrix each vertical and horizontal edge that acted as a border between a 1 

(structure) and a 0 (matrix) were summed individually. The number of vertical and 

horizontal edges were then multiplied by the corresponding length of a single mesh 

element of the 256 x 256 Cartesian grid. Due to the square nature of the grid, the 

vertical and horizontal edges could be added together and multiplied by a single 

length to calculate the total interfacial area. The fitness parameter was then 

calculated by scaling the interfacial area by a factor of 100 in order to obtain values 

in the range of 0 to 10 as described by Equation (7).   

 

𝐹𝑃 =
(# 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠) ∗ (

2.5
256

)

100
(7) 

 

Within Equation (7), FP is the fitness parameter, # of edges is the total number of 

interfacial borders, 2.5/256 is the length of each edge of the single square mesh 

element, and 100 is the scaling factor. A high fitness parameter implies a large 

interfacial area and a high damage tolerance, while a low fitness parameter implies 

a small interfacial area and a low damage tolerance. The fitness parameter will also 

be utilized in conjunction with the machine learning algorithm to aid in the 

optimization process. 

The model generated 225 random structures that met the 30% reinforcement 

volume fraction requirement and assigned a fitness parameter to each of them. The 

format of the structures rendered in Figure 1 depicts the chemical representation; 

where the white portion indicates a high concentration of chemical V, and the black 

portion indicates a high concentration of chemical U. The shape matrix was then 

used to convert the chemical representation to a structural representation. In the 

structural representation, the white portion is the structure and the black portion is 

the matrix. Eight distinct categories of bio-like structures were produced: spotted, 

striped, coral, lace, spotted-striped, hexagon, chaotic, and propagating spiral front 

structures.  

Figure 1 illustrates the top performing structures with the highest fitness 

parameter from each category. The categories were ranked in descending order 

based on their fitness parameter as follows: 3.96 for lace, 2.00 for spotted, 1.67 for 

spotted-striped, 1.41 for striped, 0.77 for propagating spiral front, 0.64 for coral, 

0.46 for hexagon, and 0.14 for chaotic. As a result, according to the fitness 



parameter, the category of structure with the highest damage tolerance was lace 

while the category of structure with the lowest damage tolerance was chaotic. An 

additional non-biomimetic category of structure was generated when a bio-like 

pattern failed to emerge, resulting in an oval structure with a fitness parameter close 

to zero.  

Figure 2 reveals the parameter settings for the randomly generated structures via 

plots of the feed rate versus kill rate and the diffusion coefficient of chemical V 

versus the diffusion coefficient of chemical U. The feed rate and kill rate were also 

plotted against the saddle-node and Hopf bifurcation curves for a general 

comparison to the results obtained by Pearson [8]. The gray points indicate the 

parameter settings for the non-biomimetic structures while the colored points 

indicate the parameter settings for the bio-like structures. 

 

 

 

 

 

 

  
 

Figure 1. Eight categories of bio-like structures generated by the two-dimensional Gray-Scott model. 

a. spotted structure b. striped structure c. coral structure d. lace structure 

 

 Spotted (2.00) a)  Striped (1.41) b) 

 Coral (0.64) c)  Lace (3.96) d) 



 
 

Figure 1. (Continued). e. spotted-striped structure f. hexagon structure g. chaotic structure                

h. propagating spiral front structure 

 

 

 
 

Figure 2. Randomly generated parameters (feed rate, kill rate, and diffusion coefficients). 

 

 

 

MACHINE LEARNING OPTIMIZATION 

 

The purpose of the randomly generated structures was to scope out fitness 

parameters across the reaction-diffusion search space. The information about the 

 Spotted-Striped (1.67) e)  Hexagon (0.46) f) 

 Chaotic (0.14) g)  Spiral Front (0.77) h) 



space was then compiled into a set of training data comprised of the six parameter 

settings (feed rate, kill rate, diffusion coefficients, and amount of chemical V added 

to the system) and the fitness parameter for each structure. Next, this information 

was used to perform numerical optimization via a machine learning method known 

as Bayesian optimization with a Kriging surrogate model [21]. Bayesian 

optimization is an iterative process that utilizes a surrogate model and an 

acquisition function to evaluate the space and guide subsequent searches. The 

purpose of the surrogate model is to learn about the space from the information 

provided by the set of training data [22, 23]. The Kriging surrogate model utilizes 

spatial correlations to minimize the mean error of the weights [24]. The acquisition 

function is then used to predict a new set of parameters while determining if it 

should explore the space more or if should exploit an area [22]. For this application, 

the Bayesian model was trained to maximize the fitness parameter during the 

optimization procedure based on the set of training data. As a result, the fitness 

parameter influenced how the algorithm’s solutions evolved.  

Once the algorithm predicts a new set of parameters, those values get fed back 

into the Gray-Scott Matlab model to obtain the new structure’s fitness parameter. 

The structure’s settings and fitness parameter are then appended to the training data 

set as a new data entry for the algorithm to learn from. Therefore, each structure 

generated by the machine learning algorithm is used to aid in the optimization 

process. In order to ensure that the structures produced by the machine learning 

algorithm were comparable to the randomly generated structures, the 30% 

reinforcement volume fraction requirement was enforced. However, in order to 

ensure a smooth search surface, any structure that had a reinforcement volume 

fraction less than 30% ± 0.5% was penalized, rather than assigned a fitness 

parameter of zero. The penalty is described below in Equation (8) 

 

𝐹𝑃∗ = 𝐹𝑃 (
𝑉𝑅

0.3
)

𝑝

(8) 

 

where FP* is the new penalized fitness parameter, FP is the original non-penalized 

fitness parameter, VR is the reinforcement volume fraction, 0.3 is the required 30% 

reinforcement volume fraction, and p is the penalty. For this application, the penalty 

was assigned a value of 1 to eradicate any sharp edges on the search surface. 

The machine learning algorithm in conjunction with the Gray-Scott model 

produced 900 new structures. Figure 3 presents the parameter settings for the 

structures via plots of the feed rate versus kill rate and the diffusion coefficient of 

chemical V versus the diffusion coefficient of chemical U. The feed rate and kill 

rate were also plotted against the saddle-node and Hopf bifurcation curves for a 

general comparison to the results obtained by Pearson [8]. The gray points indicate 

the parameter settings for the random generation, while the red points indicate the 

parameter settings generated by the machine learning algorithm. The parameter 

settings reveal how the machine learning algorithm explored and exploited the 

space. The areas with clusters of red points expose where the machine learning 

algorithm determined it could produce the most damage tolerant structures. The 

remaining individual red points indicate where the machine learning algorithm 

explored the search space but failed to find structures with a high damage tolerance.  



The majority of the structures generated either met the 30% reinforcement 

volume fraction requirement or were homogeneous; resulting in only 5.2% of the 

structures being penalized. Of the 900 structures generated, 78.2% were lace, 18.1% 

were homogeneous, 3% were oval, 0.4% were spotted, and 0.2% were coral. As a 

result, the machine learning algorithm determined that the category of structure 

with the highest damage tolerance was lace; the top four structures are displayed in 

Figure 4a-d. A close examination of the top four structures reveals intricate features 

with an absence of perfect symmetry. In nature, most structures are not uniform and 

contain multitudes of imperfections. Research has revealed that the imperfections 

tend to be a result of structural adaptation from the forces applied by the 

surrounding environment. Therefore, it has been discovered that the defects tend to 

improve the mechanical properties of biological structures [25]. A similar 

phenomenon can be shown in the structures generated by the machine learning 

algorithm. Figure 4e presents a structure that was generated with near perfect 

symmetry. While the structure looks similar to the top four, its symmetry reduces 

the fitness parameter by 19.5%. 
 

 

 
 

Figure 3. Parameter settings (feed rate, kill rate, and diffusion coefficients) generated by the machine 

learning algorithm. 

 

 

 

  
 

Figure 4. Structures generated by the machine learning algorithm with their corresponding fitness 

parameter enclosed in parenthesis. a-d. top four structures with the highest damage tolerance 

 (4.64) a)  (4.55) b) 



 
 

Figure 4. (Continued). a-d. top four structures with the highest damage tolerance  

e. symmetric structure 

 

 

 

 

RESULTS 

 

The orange box and whisker plot in Figure 5 displays the fitness parameters for 

the 225 randomly generated structures. The majority of the structures had a fitness 

parameter close to zero, because a bio-like pattern was unable to emerge resulting 

in an oval structure with a small interfacial area per unit volume. The average 

fitness parameter, indicated by the x marker, for the randomly generated structures 

was 0.31 and the maximum fitness parameter was 3.96. Due to the majority of the 

structures exhibiting near zero fitness parameters, any structure with a fitness 

parameter higher than the average was considered an outlier. The blue box and 

whisker plot in Figure 5 displays the fitness parameters for the 900 machine 

learning generated structures. A portion of the structures had a fitness parameter of 

zero because they were homogeneous. The average fitness parameter, indicated by 

the x marker, for the machine learning generated structures was 2.98 and the 

maximum fitness parameter was 4.64. Since the majority of the structures generated  

 (4.51) c)  (4.51) d) 

 (3.73) e) 



 
 

Figure 5. Box and whisker plots for the fitness parameters obtained from the randomly generated 

structures (orange box) and machine learning structures (blue box). 
 

 

 

by the machine learning algorithm had a high fitness parameter, any structure with a 

fitness parameter near zero was considered an outlier. As a result, the numerical 

optimization performed by the machine learning algorithm was able to increase the 

average fitness parameter by nearly a factor of 10, exceed the maximum randomly 

generated fitness parameter, and produce an augmented quantity of structures with 

elevated fitness parameters. Therefore, the machine learning algorithm in 

conjunction with the two-dimensional Gray-Scott model maximized the interfacial 

area for a fixed 30% reinforcement volume fraction, leading to an increase in 

damage tolerance for the bio-like structures. 

 In addition to generating more damage tolerant structures, the machine learning 

algorithm was also able to speed up the pattern generation process by a factor of 

2.16. The computational time required for the randomly generated structures, that 

met the 30% reinforcement volume fraction requirement, was 4,619 minutes or 

approximately 20.53 minutes per structure. The computational time required for the 

machine learning generated structures, that met the 30% reinforcement volume 

fraction requirement, was 6,547 minutes or approximately 9.49 minutes per 

structure. The random generation required more time to produce structures, because 

a majority of the parameter settings resulted in homogeneous patterns. Therefore, a 

lot of time was spent analyzing random parameter settings that did not produce bio-

like structures. However, the machine learning algorithm required less time to yield 

structures, because it was able to evaluate the search space and provide optimized 

parameter settings that would likely produce a bio-like structure. As a result, the 

machine learning algorithm provided a method by which parameter settings could 

be optimized for a desired mechanical property and reinforcement volume fraction 

while decreasing the computational time. 

 

 

CONCLUSION 

 

 Prior to this study, there has been no mechanical analysis performed on the 

patterns produced by the Gray-Scott model. Therefore, the results revealed a 

x 

x 



methodology by which a collection of bio-inspired composite topologies generated 

by the Gray-Scott model can be converted to structures that meet a fixed 

reinforcement volume fraction, analyzed for a desired mechanical property, and 

optimized via machine learning algorithms. Without the implementation of the 

model-based Bayesian machine learning optimization, it is difficult to produce a 

large quantity of high quality bio-like structures. While random generation of the 

parameter settings provides an unbiased search of the reaction space, a majority of 

the settings produce non-biomimetic structures. However, the random generation 

provides an excellent set of training data for the machine learning algorithms to 

learn from. As a result, the model-based Bayesian machine learning optimization is 

able to learn about the search space quickly and effectively, yielding an 

improvement of the average fitness parameter by almost a factor of 10 over the 

randomly generated structures. Therefore, the machine learning algorithms 

significantly increase the quality of structures produced. 

Future work involves using the model to generate three-dimensional structures 

with mechanical properties that can be analyzed through realistic loading 

configurations in Abaqus. The end goal is to create application specific bio-like 

designs that can be fabricated using additive manufacturing techniques. 
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