
Transfer Learning for Performance Modeling of Deep Neural Network Systems

Md Shahriar Iqbal
University of South Carolina

Lars Kotthoff
University of Wyoming

Pooyan Jamshidi
University of South Carolina

Abstract
Modern deep neural network (DNN) systems are highly con-
figurable with large a number of options that significantly
affect their non-functional behavior, for example inference
time and energy consumption. Performance models allow
to understand and predict the effects of such configuration
options on system behavior, but are costly to build because
of large configuration spaces. Performance models from one
environment cannot be transferred directly to another; usually
models are rebuilt from scratch for different environments,
for example different hardware. Recently, transfer learning
methods have been applied to reuse knowledge from perfor-
mance models trained in one environment in another. In this
paper, we perform an empirical study to understand the effec-
tiveness of different transfer learning strategies for building
performance models of DNN systems. Our results show that
transferring information on the most influential configuration
options and their interactions is an effective way of reducing
the cost to build performance models in new environments.
1 Introduction

H
ar

d
w

ar
e/

O
S

D
ep

lo
ym

en
t

C
o

m
p

il
er

N
et

w
o

rk

D
ee

p
 L

ea
rn

in
g

 S
ys

te
m

 S
ta

ck

Figure 1: DNN
System Stack

Deep neural networks (DNNs) are
becoming increasingly complex,
with an increased number of param-
eters to tune, and increased energy
consumption for the deployed sys-
tem [19]. Current state-of-the-art
methods for tuning DNNs do not
consider how a DNN is deployed
in a system stack [1, 2, 19], and do
therefore not consider energy con-
sumption. Figure 1 shows a 4-level
deployment environment of a DNN
system where options and option in-
teractions from each level contribute
to energy consumption [10, 11, 14].

Performance models have been
extensively used for understanding
the behavior of configurable sys-
tems [5, 6, 16, 17, 22, 24]. However,
constructing such models requires
extensive experimentation because
of large parameter spaces, complex
interactions, and unknown constraints [23]. Such models are
usually designed for fixed environments, i.e., fixed hardware
and fixed workloads, and cannot be used directly when the
environment changes. Repeating the process of building a
performance model every time an environment change oc-
curs is costly and slow. Several transfer learning approaches
have been proposed to reuse information from performance
models in a new environment for different configurable sys-
tems [4, 8–10]; however, to the best of our knowledge, no
approach focuses specifically on DNNs in different environ-
ments. We consider the following research question:

How can we efficiently and effectively transfer informa-
tion from a performance model of a DNN trained for one
environment to another environment?

We perform an empirical study comparing different trans-
fer learning strategies for performance models of DNNs for
different environmental changes, e.g., different hardware and
different workloads. We consider guided sampling (GS) [9],
direct model transfer (DM) [21], linear model shift (LMS),
and non-linear model shift (NMLS) [10]. We model the non-
functional properties inference time and energy consumption
in this paper and consider configuration options that affect
these properties as the parameters we tune, i.e. hardware-
level configuration options. Our results indicate that GS trans-
fer learning outperforms next best learning method, NMLS,
by 19.76% and 8.33% using regression trees (RT) and by
23.47% and 12.70% using neural networks (NN) for infer-
ence time and energy consumption, respectively. This enabled
us to build performance models in new environments using
only 2.44% of the configuration space to predict best con-
figurations in our systems with comparable accuracy to the
performance models built for the original environment.The
difference between the lowest and highest energy consump-
tion can be up to a factor of 20.

2 Methodology
We consider a pre-trained image recognition DNN system
in 16 different environments: 2 different hardware platforms
(Nvidia Jetson TX1, h1, and Jetson TX2, h2), 2 pre-trained
models (Xception [3], m1, and InceptionV3 [20], m2) and 4
different image sizes (200×200, 400×400, 600×600, and
800×800, s1 through s4). In each environment, we evaluate
the performance on the same 10 randomly selected images
from the ILSVRC2017 [15] image recognition dataset.

The configuration space we consider is composed of the
following hardware configuration options: (i) CPU status, (ii)
CPU frequency, (iii) GPU frequency, and (iv) memory con-
troller frequency. We evaluate a total of 46,080 configurations
on the TX1 platform and 11,616 configurations on the TX2
platform, for a total experimental effort of ≈ 43.6 days of
computational time across all 16 environments. We chose the
TX1 and TX2 platforms due to their limited energy budget
to better understand DNN system behavior with changing
configuration options.

We construct performance models of the effect of configu-
ration options on DNN system performance using these exper-
imental data with RTs and NNs, which are frequently used in
the literature to induce performance models [5, 12, 13, 16, 21].
We measure the performance of these models in terms of
mean absolute percentage error, Err [18].

We implement GS using a step-wise regression technique
with forward selection (FS) and backward elimination (BE).
Each step of FS adds an interaction term to the regression

i



101 102
Err

R
T

N
N

R
eg
re
ss
io
n

(h1,m1,s1)

101 102
Err

(h1,m1,s2)

101 102
Err

(h2,m1,s3)

101 102
Err

(h2,m1,s4)

101 102
Err

(h2,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h2,m2,s4)

101 102
Err

(h1,m1,s3)

101 102
Err

(h1,m1,s4)

101 102
Err

(h1,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h1,m2,s3)

101 102
Err

(h1,m2,s4)

101 102
Err

(h2,m1,s1)

101 102
Err

(h1,m1,s2)

GS DM LMS NLMS

101 102
Err

R
T

N
N

R
eg
re
ss
io
n

(h1,m1,s1)

101 102
Err

(h1,m1,s2)

101 102
Err

(h2,m1,s3)

101 102
Err

(h2,m1,s4)

101 102
Err

(h2,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h2,m2,s4)

101 102
Err

(h1,m1,s3)

101 102
Err

(h1,m1,s4)

101 102
Err

(h1,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h1,m2,s3)

101 102
Err

(h1,m2,s4)

101 102
Err

(h2,m1,s1)

101 102
Err

(h1,m1,s2)

GS DM LMS NLMS

Figure 2: Comparison of prediction error of different transfer learning techniques (GS, DM, LMS, and NLMS) for performance
models of DNN systems (Regression Tree and Neural Net) for inference time (top) and energy consumption (bottom). We
consider 15 different target environments and show error bars for values aggregated over 10 predictions on a log scale.

model that increases the coefficient of determination, while
BE removes an interaction term if its significance is below a
threshold. We study the interaction terms of the final regres-
sion model; in particular, we exclude terms with coefficients
that are less than 10−12. These terms guide the sampling
towards important configuration options and avoid wasting
resources on evaluations that effect no change when building
performance models in new environments. The DM transfer
learning approach reuses a performance model built for one
environment directly in a different environment. The LMS
and NMLS transfer learning techniques learn a linear regres-
sion model and a non-linear random forest regression model,
respectively, to translate the predictions from a performance
model trained for one environment into predictions for a dif-
ferent environment. These transfer models are based on a
small number of randomly-sampled configurations that are
evaluated in both environments.

In our experiments, we select the TX2 platform with the
InceptionV3 DNN and 600× 600 images as the source en-
vironment to train the performance models for. We transfer
these performance models to each of the remaining 15 target
environments. The source code and data are available in an
online appendix [7].

3 Results and Discussion
We present the results in Figure 2. They demonstrate that
GS outperforms DM, LMS, and NMLS in each environment
for both inference time and energy consumption. Average
Err of the performance models induced using GS are 28.09%
and 22.93% lower than DM, 25.64% and 21.59% lower than
LMS, and 23.47% and 19.76% lower than NLMS for infer-
ence time using NN and RT, respectively. Similarly, they are

42.85% and 39.41% lower than DM, 20.52% and 13.19%
lower than LMS, and 12.70% and 8.33% lower than NLMS
for energy consumption for NN and RT, respectively. All of
GS, LMS, and NLMS incurred the same cost (evaluation of
2.44% of the entire configuration space, ≈ 2.48 hours), while
the cost for DM was zero as the performance model from
the source environment is reused without modification in the
target environment. For the DM and GS transfer learning
techniques, an increase in computational effort of just 2.48
hours (≈ 0.15% of the effort to train the original performance
model) leads to an decrease of Err of 28.09% and 22.93% for
inference time and 42.85% and 39.41% for energy consump-
tion using NN and RT, consecutively.

If the environment change between source and target in-
cludes a hardware change, DM is more effective than LMS
and NLMS for inference time modeling; however, for energy
consumption, NLMS performs better than DM and LMS.

Guided sampling can help practitioners to quickly develop
reliable performance models for new environments based
on information they have obtained in the past to tune and
optimize a system. Such performance models can guide prac-
titioners to avoid invalid configurations and are useful for
design space exploration to quickly find optimal configura-
tions in new environments using influential configurations
which typically practitioners miss. These models are also
useful to learn the performance landscape of a system for
performance debugging, and obtain a better understanding of
how the configuration options affect performance in general.
In future work, we will consider extending the configuration
space with options from all 4 levels of the DNN system stack.

ii



4 Acknowledgements
This work has been supported by AFRL and DARPA
(FA8750-16-2-0042). Lars Kotthoff is supported by NSF grant
#1813537.

References

[1] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and
Diana Marculescu. Neuralpower: Predict and de-
ploy energy-efficient convolutional neural networks.
arXiv:1710.05420, 2017.

[2] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In ACM SIGARCH Com-
puter Architecture News, volume 44, pages 367–379.
IEEE Press, 2016.

[3] François Chollet. Xception: Deep learning with depth-
wise separable convolutions. arXiv preprint, pages 1610–
02357, 2017.

[4] Daniel Geschwender, Frank Hutter, Lars Kotthoff, Yuri
Malitsky, Holger H. Hoos, and Kevin Leyton-Brown.
Algorithm Configuration in the Cloud: A Feasibility
Study. In LION 8, pages 41–44, February 2014.

[5] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert
Siegmund, and Andrzej Wasowski. Variability-aware
performance prediction: A statistical learning approach.
In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 301–311. IEEE, 2013.

[6] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin,
Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Dynamic knobs for responsive power-aware computing.
In In Proc. of Int’l Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2011.

[7] Md Shahriar Iqbal, editor. Opml-DNNPerfModeling.
2019. https://github.com/iqbal128855/
OpML19-DNNPerfModeling.

[8] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez,
Christian Kästner, Akshay Patel, and Yuvraj Agarwal.
Transfer learning for performance modeling of config-
urable systems: An exploratory analysis. In Proceedings
of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 497–508.
IEEE Press, 2017.

[9] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and
Norbert Siegmund. Learning to sample: exploiting sim-
ilarities across environments to learn performance mod-
els for configurable systems. In Proceedings of the
2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages
71–82. ACM, 2018.

[10] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Nor-
bert Siegmund, and Prasad Kawthekar. Transfer learning
for improving model predictions in highly configurable
software. In Proceedings of the 12th International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 31–41. IEEE Press,
2017.

[11] Irene Manotas, Lori Pollock, and James Clause. Seeds:
a software engineer’s energy-optimization decision sup-
port framework. In Proceedings of the 36th Interna-
tional Conference on Software Engineering (ICSE),
pages 503–514. ACM, 2014.

[12] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven
Apel. Faster discovery of faster system configurations
with spectral learning. Automated Software Engineering
(ASE), pages 1–31, 2017.

[13] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven
Apel. Using bad learners to find good configurations. In
Proc. Int’l Symp. Foundations of Software Engineering
(FSE), ESEC/FSE 2017, pages 257–267, New York, NY,
USA, 2017. ACM.

[14] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo:
A performance model for deep neural networks. 2016.

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[16] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel,
and Krzysztof Czarnecki. Cost-efficient sampling for
performance prediction of configurable systems. In Proc.
Int’l Conf. Automated Software Engineering (ASE),
pages 342–352. IEEE, November 2015.

[17] Norbert Siegmund, Alexander Grebhahn, Sven Apel,
and Christian Kästner. Performance-influence models
for highly configurable systems. In Proc. Europ. Soft-
ware Engineering Conf. Foundations of Software En-
gineering (ESEC/FSE), pages 284–294. ACM, August
2015.

[18] P. M. Swamidass. Mape (mean absolute percentage er-
ror)mean absolute percentage error (mape). In Encyclo-
pedia of Production and Manufacturing Management,
pages 462–462, Boston, MA, 2000. Springer US.

[19] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S
Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (CVPR), pages 2818–2826, 2016.

iii

https://github.com/iqbal128855/OpML19-DNNPerfModeling
https://github.com/iqbal128855/OpML19-DNNPerfModeling


[21] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo,
Sebastian Fischmeister, and Krzysztof Czarnecki. Trans-
ferring performance prediction models across different
hardware platforms. In Proc. Int’l Conf. on Performance
Engineering (ICPE), pages 39–50. ACM, 2017.

[22] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and
Jens Krinke. Deep parameter optimisation. In Proc.
of the Annual Conference on Genetic and Evolutionary
Computation (GECCO), pages 1375–1382. ACM, 2015.

[23] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you

have given me too many knobs!: Understanding and
dealing with over-designed configuration in system soft-
ware. In Proc. Int’l Symp. Foundations of Software En-
gineering (FSE), pages 307–319, New York, NY, USA,
August 2015. ACM.

[24] Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao,
and Dick Epema. Towards machine learning-based auto-
tuning of mapreduce. In Proc. Int’l Symp. on Modeling,
Analysis and Simulation of Computer and Telecommuni-

cation Systems (MASCOTS), pages 11–20. IEEE, 2013.

iv


	Introduction
	Methodology
	Results and Discussion
	Acknowledgements

