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Abstract
Modern deep neural network (DNN) systems are highly con-
figurable with large a number of options that significantly
affect their non-functional behavior, for example inference
time and energy consumption. Performance models allow
to understand and predict the effects of such configuration
options on system behavior, but are costly to build because
of large configuration spaces. Performance models from one
environment cannot be transferred directly to another; usually
models are rebuilt from scratch for different environments,
for example different hardware. Recently, transfer learning
methods have been applied to reuse knowledge from perfor-
mance models trained in one environment in another. In this
paper, we perform an empirical study to understand the effec-
tiveness of different transfer learning strategies for building
performance models of DNN systems. Our results show that
transferring information on the most influential configuration
options and their interactions is an effective way of reducing
the cost to build performance models in new environments.
1 Introduction

H
ar

d
w

ar
e/

O
S

D
ep

lo
ym

en
t

C
o

m
p

il
er

N
et

w
o

rk

D
ee

p
 L

ea
rn

in
g

 S
ys

te
m

 S
ta

ck

Figure 1: DNN
System Stack

Deep neural networks (DNNs) are
becoming increasingly complex,
with an increased number of param-
eters to tune, and increased energy
consumption for the deployed sys-
tem [19]. Current state-of-the-art
methods for tuning DNNs do not
consider how a DNN is deployed
in a system stack [1, 2, 19], and do
therefore not consider energy con-
sumption. Figure 1 shows a 4-level
deployment environment of a DNN
system where options and option in-
teractions from each level contribute
to energy consumption [10, 11, 14].

Performance models have been
extensively used for understanding
the behavior of configurable sys-
tems [5, 6, 16, 17, 22, 24]. However,
constructing such models requires
extensive experimentation because
of large parameter spaces, complex
interactions, and unknown constraints [23]. Such models are
usually designed for fixed environments, i.e., fixed hardware
and fixed workloads, and cannot be used directly when the
environment changes. Repeating the process of building a
performance model every time an environment change oc-
curs is costly and slow. Several transfer learning approaches
have been proposed to reuse information from performance
models in a new environment for different configurable sys-
tems [4, 8–10]; however, to the best of our knowledge, no
approach focuses specifically on DNNs in different environ-
ments. We consider the following research question:

How can we efficiently and effectively transfer informa-
tion from a performance model of a DNN trained for one
environment to another environment?

We perform an empirical study comparing different trans-
fer learning strategies for performance models of DNNs for
different environmental changes, e.g., different hardware and
different workloads. We consider guided sampling (GS) [9],
direct model transfer (DM) [21], linear model shift (LMS),
and non-linear model shift (NMLS) [10]. We model the non-
functional properties inference time and energy consumption
in this paper and consider configuration options that affect
these properties as the parameters we tune, i.e. hardware-
level configuration options. Our results indicate that GS trans-
fer learning outperforms next best learning method, NMLS,
by 19.76% and 8.33% using regression trees (RT) and by
23.47% and 12.70% using neural networks (NN) for infer-
ence time and energy consumption, respectively. This enabled
us to build performance models in new environments using
only 2.44% of the configuration space to predict best con-
figurations in our systems with comparable accuracy to the
performance models built for the original environment.The
difference between the lowest and highest energy consump-
tion can be up to a factor of 20.

2 Methodology
We consider a pre-trained image recognition DNN system
in 16 different environments: 2 different hardware platforms
(Nvidia Jetson TX1, h1, and Jetson TX2, h2), 2 pre-trained
models (Xception [3], m1, and InceptionV3 [20], m2) and 4
different image sizes (200×200, 400×400, 600×600, and
800×800, s1 through s4). In each environment, we evaluate
the performance on the same 10 randomly selected images
from the ILSVRC2017 [15] image recognition dataset.

The configuration space we consider is composed of the
following hardware configuration options: (i) CPU status, (ii)
CPU frequency, (iii) GPU frequency, and (iv) memory con-
troller frequency. We evaluate a total of 46,080 configurations
on the TX1 platform and 11,616 configurations on the TX2
platform, for a total experimental effort of ≈ 43.6 days of
computational time across all 16 environments. We chose the
TX1 and TX2 platforms due to their limited energy budget
to better understand DNN system behavior with changing
configuration options.

We construct performance models of the effect of configu-
ration options on DNN system performance using these exper-
imental data with RTs and NNs, which are frequently used in
the literature to induce performance models [5, 12, 13, 16, 21].
We measure the performance of these models in terms of
mean absolute percentage error, Err [18].

We implement GS using a step-wise regression technique
with forward selection (FS) and backward elimination (BE).
Each step of FS adds an interaction term to the regression
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Figure 2: Comparison of prediction error of different transfer learning techniques (GS, DM, LMS, and NLMS) for performance
models of DNN systems (Regression Tree and Neural Net) for inference time (top) and energy consumption (bottom). We
consider 15 different target environments and show error bars for values aggregated over 10 predictions on a log scale.

model that increases the coefficient of determination, while
BE removes an interaction term if its significance is below a
threshold. We study the interaction terms of the final regres-
sion model; in particular, we exclude terms with coefficients
that are less than 10−12. These terms guide the sampling
towards important configuration options and avoid wasting
resources on evaluations that effect no change when building
performance models in new environments. The DM transfer
learning approach reuses a performance model built for one
environment directly in a different environment. The LMS
and NMLS transfer learning techniques learn a linear regres-
sion model and a non-linear random forest regression model,
respectively, to translate the predictions from a performance
model trained for one environment into predictions for a dif-
ferent environment. These transfer models are based on a
small number of randomly-sampled configurations that are
evaluated in both environments.

In our experiments, we select the TX2 platform with the
InceptionV3 DNN and 600× 600 images as the source en-
vironment to train the performance models for. We transfer
these performance models to each of the remaining 15 target
environments. The source code and data are available in an
online appendix [7].

3 Results and Discussion
We present the results in Figure 2. They demonstrate that
GS outperforms DM, LMS, and NMLS in each environment
for both inference time and energy consumption. Average
Err of the performance models induced using GS are 28.09%
and 22.93% lower than DM, 25.64% and 21.59% lower than
LMS, and 23.47% and 19.76% lower than NLMS for infer-
ence time using NN and RT, respectively. Similarly, they are

42.85% and 39.41% lower than DM, 20.52% and 13.19%
lower than LMS, and 12.70% and 8.33% lower than NLMS
for energy consumption for NN and RT, respectively. All of
GS, LMS, and NLMS incurred the same cost (evaluation of
2.44% of the entire configuration space, ≈ 2.48 hours), while
the cost for DM was zero as the performance model from
the source environment is reused without modification in the
target environment. For the DM and GS transfer learning
techniques, an increase in computational effort of just 2.48
hours (≈ 0.15% of the effort to train the original performance
model) leads to an decrease of Err of 28.09% and 22.93% for
inference time and 42.85% and 39.41% for energy consump-
tion using NN and RT, consecutively.

If the environment change between source and target in-
cludes a hardware change, DM is more effective than LMS
and NLMS for inference time modeling; however, for energy
consumption, NLMS performs better than DM and LMS.

Guided sampling can help practitioners to quickly develop
reliable performance models for new environments based
on information they have obtained in the past to tune and
optimize a system. Such performance models can guide prac-
titioners to avoid invalid configurations and are useful for
design space exploration to quickly find optimal configura-
tions in new environments using influential configurations
which typically practitioners miss. These models are also
useful to learn the performance landscape of a system for
performance debugging, and obtain a better understanding of
how the configuration options affect performance in general.
In future work, we will consider extending the configuration
space with options from all 4 levels of the DNN system stack.
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