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ABSTRACT

A key strength of agent-based modelling is the abil-
ity to explore the upward-causation of micro-dynamics
on the macro-level behaviour of a system. However, in
policy contexts, it is also important to be able to rep-
resent downward-causation from the macro and meso-
levels to the micro, and to represent decision-making
at the macro level (i.e., by governments) in a sensible
way. Though we cannot model political processes eas-
ily, we can try to optimise decisions given certain stated
goals (e.g., minimum cost, or maximum impact). Opti-
misation offers one potential method to model macro-
level decisions in this way. This paper presents the
implementation of an integration of optimisation with
agent-based modelling for the example of an auction
scenario of government support for the installation of
photovoltaic solar panels by households. Auction type
scenarios of this kind, in which large groups of individu-
als or organisations make bids for subsidies or contracts
from government, are common in many policy domains.

Introduction

Agent-based modelling (ABM) is an increasingly
popular technique in the social sciences to evaluate
the effect of policies and other instruments that af-
fect groups of people. This is a result of the fact that
ABM is well suited to exploring the macro-level be-
haviour of a system resulting from the micro-dynamics
of the agents represented. Many heterogenous and au-
tonomous agents and their interaction with one an-
other, as well as the environment they act in, are rela-
tively easily represented and the resulting models rep-
resent upward-causation well. However, in policy con-
texts it is common for downward-causation to also play
a central role, and thus it is important for this to be
included in any policy relevant ABM. Thus, a policy
ABM may need to include a ‘policymaker’ type agent,
and a process through which its decisions affect other
agents. Representing the decision-making process of
such a policymaker agent is likely to be difficult, reflect-
ing the political and complex nature of policy-making.
One option is to focus on a small selection of central
goals a policymaker may have, such as minimising the

cost of a policy, maximising the effect, or optimising
with respect to another indicator (e.g., environmental
quality).

Optimisation technologies are well-established in
computer science and artificial intelligence to select the
optimal element(s) or solution(s) (with regard to some
goals) from some set of available alternatives. In many
policy examples, there is a choice of possible decisions
to make and actions to take given the current state of
the system. Typically, these decision and action alter-
natives can be distinguished by the “value” they add
to the overall goals of the policy makers. In such cases,
it is desirable to make the decision that optimises the
value with respect to the goal. This is an optimisation
problem.

A typical example of an optimisation problem in this
context is where a set of companies are putting in bids
for contracts to provide a certain service that should
be realised as a result of a policy decision. Usually,
cost is the primary optimisation criterion – the service
should be provided as cheaply as possible. However, the
adequacy of the service has to be ensured as well. If
only one company can get the contract, the problem is
usually easy to solve – the lowest bidder that maintains
the required standards gets the contract.

However, in many scenarios, it is not that simple.
The service to provide may be complex and consist of
several sub-services. Companies bid to provide those
sub-services and it is the task of the policy maker to
ensure that everything necessary is provided in the end.
Instead of simply minimizing the cost, other consider-
ations need to be taken into account now, making the
problem much harder to solve. This is where optimisa-
tion technology is useful and can make life much easier
for the policy maker.

This paper presents a method for the integration of
this type of optimisation with an ABM built in Net-
Logo. This powerful method offers policy modellers
a desirable option for representing decision-making at
the macro-level. To illustrate our approach the exam-
ple case of government support for household installa-
tion of photovoltaic (PV) solar panels is used. In this
case, households/agents make bids for government sup-
port, and the optimisation selects a subset of these and
‘gives’ out support in such a way that the goal set out
by the user (e.g. minimization of costs) is achieved.
This type of auction scenario is particularly common



in many policy domains.
Although it might be possible to implement optimi-

sation routines in NetLogo by embedding them in an
agent’s behaviour rules, it should be noted that this
would prove highly computationally demanding, thus
reducing the model speed considerably. More funda-
mentally, it would be time inefficient owing to the ex-
tensive coding required. It is thus much more efficient
to use a stand-alone optimiser and integrate the two.

The paper is structured as follows. In the next sec-
tion we introduce the individual components of our
integrated approach, namely ABM and optimisation.
Next, we describe previous work and outline the nov-
elty of our approach against it. Then, the case study
of PV adoption in the Emilia Romagna region is pre-
sented alongside details of the ABM. In the next sec-
tion we focus on the main contribution of this paper
by describing and discussing the proposed integration
approach itself. Finally, some initial results of the final
integrated model are presented. The paper closes with
a brief conclusion section.

Methodological Background

Agent-based modelling

[3, 7, 15] provide overviews of ABM and their use in
the social sciences. ABM is a form of simulation mod-
elling in which multiple agents act and interact within
an environment. Agents can represent any decision-
making unit (e.g., person, household, firm) and are au-
tonomous, can communicate with each other, and are
typically heterogeneous. The agents act and interact
within an environment which may represent an abstract
conceptual space (e.g., social or opinion space), a real
physical or geographic space (e.g., a building or coun-
try), or have no real meaning (i.e., when agents are in
a network connected by links). Typically the agent be-
haviour rules, attributes and the environment are setup
using empirical data or theory, and the model is then
run. The emergent macro-level patterns that are the
output of the model are then compared and analysed
alongside the micro-level rules. Broadly, ABMs can be
used first, to explore and explain the mechanism of a
theory of individual behaviour on the whole system, or
second, to describe and forecast the behaviour of a sys-
tem, or third, in a participatory context to explore a
system and its behaviours with stakeholders. ABM is
most often used when the researchers: (i) are interested
in modelling interactions and feedback between actors,
and actors and their environment, (ii) believe hetero-
geneity of actors is important in the system, (iii) are
interested in the spatial dynamics of a system, (iv) be-
lieve path dependence may be an important element
in the system, (v) believe actors in the system have
behaviours that change, or adapt over time, and/or
(vi) want to use an intuitive and flexible modelling ap-
proach for participatory modelling [10].

Whilst ABM are well suited, and typically used, to
represent the decision-making and behaviour of many
heterogeneous micro-level agents, it is less common to
represent meso and macro-level actors. At the meso-

level, examples might include firms, or government
agencies, whereas at the macro-level examples could
include governments or nations. However, it is difficult
to endow these agents with sophisticated behaviours
(beyond profit/utility maximisation or heuristics), es-
pecially when interacting with a large number of micro-
level agents. Indeed, if the behaviour is more complex,
or the number of micro-level agents is large, the pro-
cess is likely to be computationally demanding. This
reflects the problem that the meso or macro-level agent
has to perceive, use and manipulate information from
all of the agents in the simulation.

The combination of the facts that meso and macro-
level behaviour is worthy of representing, and that it
can prove difficult to implement in NetLogo means fur-
ther development is an important avenue for the con-
tinued evolution of ABM for policy and social science
applications.

Optimisation

Optimisation aims to find the solution to a problem
that is optimal with respect to an application-specific
criterion. It is applicable in a wide range of contexts
and a well-known technique in many sciences. Exam-
ples include minimising waste in a production pipeline
that can manufacture a range of different items from
the same raw material for a set of orders, minimis-
ing the cost of travel while visiting a list of locations,
or maximising the value while minimising expenditure
when bidding on a list of items with associated cost and
value.

In a policy-making context, optimisation problems
can arise in a number of scenarios. The budget al-
located to achieve a certain objective may need to be
distributed across different policy instruments in an op-
timal fashion. The provision of a service may rely on
several companies putting in bids to provide this ser-
vice for a certain fee. A regional development project
may want to minimise the negative impact on the en-
vironment.

Optimisation is a large field in its own right, and
a survey of the different areas is beyond the scope of
this paper. The interested reader is referred to [4] for
an introduction. There are a number of mature soft-
ware packages that implement optimisation technolo-
gies that can be used here.

It is important to remember that optimisation facil-
itates decision-making at the macro-level. Once, for
example, the bids for a service are known, the decision
based on them can be optimised. To get these bids,
other techniques are required – in our case, agent-based
modelling. Without this separate component, optimi-
sation cannot do its work as it would have no data to
base its decisions on. It is the integration of agent-
based modelling and optimisation that can support the
policy maker.

Previous work

There is a relatively limited literature on the inte-
gration of optimisation and ABM, and the authors are



aware of no examples akin to the type of integration
(i.e., optimisation used in a macro-level/policymaker
agent) that is presented here. Broadly, there are two
most common forms of integration of optimisation and
ABM in previous works: (i) optimisation used as a cal-
ibration and validation tool for ABMs, and (ii) ABMs
used to solve optimisation problems.

In the first form, which appears the most popular [6],
[16] use optimisation to fine tune agent parameters in
an ABM of marketing strategies. [12] and [8] again
use optimisation in a similar way in their respective
models of financial markets. [2] propose using ‘adap-
tive dichotomic optimisation’, which represents a form
of single objective genetic algorithm optimisation, and
demonstrate with an ABM of a financial market. [11]
use optimisation in the same way to calibrate micro-
level parameters, but also to help optimise the emer-
gent behaviour in their model of disaster management
(i.e., to minimise casualties, and other indicators), and
in effect to explore the results of their model. [13] uses
optimisation to calibrate their model of air traffic man-
agement and suggests the approach be used elsewhere.
[9] use optimisation in a related form, in which an ABM
and optimisation model of anti-pirating techniques for
shipping companies are developed and used to validate
and complement each other within a larger tool.

In the second form, [1] present a review of the uses of
ABMs, and broadly agent approaches, to help solve op-
timisation problems. They identify two types of agents
in this sense, first physical agents that may represent
physical entities such as workers or machines, and sec-
ond, ‘functional’ agents, that represent nothing in the
physical world, but are a piece of software used to carry
out subtasks of the ABM. They also identify two struc-
tures: one in which many agents self-organise to solve
a problem, or a second in which there are ‘mediator’
type agents which set an optimised plan, that may be
refined by the ‘worker’ agents. This type of integration
is less formal than the first and is essentially the ap-
plication of ABM to scheduling or resource allocation
problems. Examples include [17], [5], and [14].

Finally, [5] present the embedding of optimisation in
micro-level agents to aid resource allocation problems,
using an example taken from the food industry. This
is one of the more similar integrations to that which
is described in this paper, however there are some cru-
cial differences. First and most importantly, the actors
represented are at the micro-level, rather than at the
macro-level (i.e., policymakers). Second, the intention
of the model is to solve some production / resource
problem, rather than to represent decision-making ac-
curately. Third, the implementation is done using one
piece of software, rather than integrating an existing
ABM with optimisation software.

What separates these previous works and this pa-
per is that the approaches use either, optimisation to
analyse the results of the simulation after it has been
run, embed it in the micro-agent decision making ar-
chitecture, or use agent type approaches on common
optimisation problems. The approach described in this

paper allows a run-time integration of optimisation and
ABM, where the optimisation component (representing
a macro-level policy agent) can communicate with, and
influence, and thereby optimise macro-level decisions in
the simulation during its execution.

Case Study

Photovoltaic in the Emilia Romagna region

The example used in this paper is that of the ‘ePolicy
social simulator’ developed as part of the ePolicy FP7
project on engineering the policy life-cycle1 which uses
the Emilia Romagna region in Italy as its case study.
Italy has few fossil fuel resources and relies heavily on
imported natural gas, which is why (together with a
general sentiment of the Italian population against nu-
clear power) renewable energy has long been a topic
of interest in Italy. Of the different renewable energy
technologies available, PV panels have been of partic-
ular interest in Italy due to climate and economic con-
ditions that have resulted in a steep rise in capacity
in Italy in the last couple of years. The regional gov-
ernment in Emilia Romagna is particularly interested
in the potential for new technologies to contribute to
energy production. This interest in PV serves as the
basis of the use of Emilia Romagna as the case study.

The ePolicy social simulator

The ePolicy social simulator, which is an ABM, has
been developed to serve as a component of a wider deci-
sion support system (DSS) for policy makers and ana-
lysts working on energy policy. It is intended to be used
to answer the policy question, “What are the effects of
different policy instruments on PV system diffusion in
the Emilia Romagna region?”. For Emilia Romagna,
two specific regional policy instruments have been iden-
tified in collaboration with regional policy-makers: in-
vestment grants and interest-rate support (for interest
on loans to purchase a system). The ABM simulates
the behaviour of households in reaction to these policy
support schemes. The agents’ behaviour rule simulates
the consideration of, and decision to install, PV and
is based upon a household survey and interview data
from Italy. When agents decide to install PV, they
may make a bid to the regional government to apply
for support either in the form of grants or interest-rate
support. This form of application is motivated by simi-
lar schemes that the Emilia Romagna region has run in
the past. The optimiser then has to decide which bids
to fund, given the overall budget and power capacity
target and any other goals. The synthetic population
of agents in the ABM is setup using population data
from Italy. The environment of the ABM in which the
agents interact in is setup using GIS data of the Emilia
Romagna region. The outputs of the ABM are the
aggregate costs of installations, aggregate power gener-
ated by PV, and total number of installations.

1See http://www.epolicy-project.eu/ for more details.

http://www.epolicy-project.eu/


Integration approach

The integrated approach is implemented in a Java-
based user interface which unifies and encapsulates
both the ABM and the optimiser2. While NetLogo is
used for the ABM, the lpsolve software3 provides the
optimiser. Both provide application programming in-
terfaces (APIs) that we utilise in the user interface.

The purpose of the user interface is to transpar-
ently make use of the relevant technologies without bur-
dening the user with additional parameters and setup
steps. Indeed, there is no indication of how the speci-
fied problem is being solved underneath. This also al-
lows for easy and transparent integration of alternative
solving methods.

Figure 1 describes the integration of the ABM and
optimisation. Using the user interface, the user first
defines the scenario they wish to explore. The scenario
options include selecting the region (Emilia Romagna
or just its capital, Bologna), budget and its distribu-
tion over time (first come, first served, even, ramp up
or down), intended PV power supply, optimisation cri-
terion (minimising the budget spent, maximising the
power production, maximising the participation, i.e.
the number of funded bids), and their beliefs about
the status of national level policy instruments (feed-in
tariffs and income tax liability reductions). The simu-
lator and its data are then loaded, and the optimiser is
informed of the user’s choices on optimisation criterion,
budget and budget distribution.

Now the simulation begins. For each time period
(one year), household decisions are made, and a list
of households who wish to bid for regional government
support is generated along with the bid amount and
the size of the PV installation. This list of bids is then
passed to the optimiser which builds an optimisation
model based on the bids and the parameters specified
by the user.

The optimisation model is a variant of the so-called
knapsack problem – given a set of items, each with a
certain weight and value, and a knapsack with a cer-
tain capacity, maximise the value of the items put in
the knapsack without exceeding its capacity. In the
case of maximizing the power produced for example,
the weight of the items is the cost, the value the power
produced, and the capacity of the knapsack is the bud-
get.

Knapsack-type problems are very common in the op-
timisation domain and can be solved very efficiently in
practice even though they are hard to solve in gen-
eral. In our experiments, the optimisation problems
were solvable within a fraction of a second for all sce-
narios and optimisation criteria.

The optimiser solves the optimisation problem and
generates a list of funded bids. This funded list is then
passed back to the ABM where the households imple-

2Supplementary material in form of a more detailed descrip-
tion of the implementation, experimental results, and where
the software can be downloaded be found at http://www.
epolicy-project.eu/sites/default/files/public/D5.3.pdf.

3See http://lpsolve.sourceforge.net/ for details.

ment the decisions and install PV, resulting in costs
to the policy instrument, and increased power genera-
tion. This process is repeated until the simulation has
reached the desired final year (currently 2020). Finally,
the produced power, spent budget, count of funded bids
(i.e., installations) is provided to the user.

Initial simulator results

Table I presents a comparison of the key outputs
that the different optimisation objectives and methods
achieve on the data of an auction the Emilia-Romagna
region ran in 2004, with a budget of 3,200,000 Euro and
a target power of 1,200 kW. All scenarios use the first
come, first served budget distribution and have both
grant and interest payment incentives enabled. The
values are the ones achieved after the first simulation
step.

The ordering approach corresponds to what the
Emilia-Romagna region did in the 2004 auction to de-
termine the winning bids. All bids are ranked accord-
ing to criteria that depend on the optimisation func-
tion. Then the list of bids is traversed in this order,
with each bid funded if there are sufficient funds avail-
able and the power target has not been reached. For
example, when maximising the power production, the
bids are ranked by the ratio of power production of the
installation divided by its cost.

We are showing only the results after the first time
step of the simulation because the results across all time
steps are not comparable. The optimisation takes into
account all the information available at each step and
makes the optimal decision for that. This is what we
aim to demonstrate here. Ideally, we would be able to
make decisions based on the information for the entire
simulation – while funding a particular bid at time step
n may appear to be a good decision, it is possible that
at time step n+1 a better bid will be made that should
be funded instead. However, it is impossible for us to
do this – decisions have to be made for each time step
because earlier decisions will affect the course of the
simulation and later time steps.

The approaches that do not use optimisation tend to
leave more “slack” at each time step, i.e. not all the
bids that could be funded are. This means that more
of the budget is available in subsequent time steps, al-
lowing to fund potentially better bids. It is because of
this that the approaches that do not use optimisation
may achieve overall better results than the optimisa-
tion approach. This is, however, purely by chance –
optimisation is overall likely to obtain better results,
especially when the number of time steps is large and
decisions are spread out across them. Here, we compare
the numbers after the first simulation step to remove
this random element.

Table I clearly shows that using optimisation technol-
ogy is worthwhile. The simple first come, first serve ap-
proach for deciding which bids are funded achieves sig-
nificantly less power production and fewer funded bids
than the other approaches. Ranking the bids depend-
ing on the optimisation criterion achieves much better

http://www.epolicy-project.eu/sites/default/files/public/D5.3.pdf
http://www.epolicy-project.eu/sites/default/files/public/D5.3.pdf
http://lpsolve.sourceforge.net/
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Fig. 1: UML sequence diagram of the integration between user, user interface, optimisation component, and ABM.



Total power (kW) Total allocated funds (Euro) Total funded bids
first come, first serve 4,350 3,191,303.73 1,750

order to maximise power 7,050 3,129,700.30 2,175
order to minimise expenditure 1,350 526,087.50 150

order to maximise participation 6,300 3,175,091.00 2,425
optimise to maximize power 7,125 3,199,996.67 825

optimise to minimize expenditure 1,200 466,252.5 125
optimise to maximize participation 6,300 3,198,519.88 2,425

TABLE I: Comparison of key outputs for different optimisation objectives and methods for the first simulation step. Both incentive

instruments (i.e. investment grants and interest-rate support) were enabled and first come, first served budget distribution is used.

results. Yet, using optimisation is able to improve even
further on this. These results clearly demonstrate the
benefit of using optimisation technology for ABM.

Note that in the case of optimising to maximize par-
ticipation, the order and the optimisation approach
achieve the same number of funded bids, but the or-
der approach at a lower cost. This is because the op-
timisation approach considers only the single objective
of maximizing the participation – there are several as-
signments of funds to bids that achieve the same par-
ticipation and the optimisation approach happened to
choose the one with a higher cost.

This is not an inherent limitation of the optimisation
approach – to take the cost into account as well, we can
model the problem as a so-called multi-objective opti-
misation problem. This class of problems is similarly
well studied in the literature and can be solved effi-
ciently in practice. We do not consider this approach
here simply for the sake of simplicity of the exposition –
multi-objective optimisation problems are by their very
nature more complex to define.

Conclusion

We have made a first step towards integrating agent-
based modelling and optimisation technologies at run-
time. In many scenarios, a special type of agent is re-
quired to make downward-causation decisions that af-
fect the other agents in a simulation. Such decisions
need to take into account the current state of the simu-
lation and optimise for a criterion. Optimisation tech-
nology is a natural choice for implementing this process.
Instead of integrating the optimisation as part of the
decision-making of a ‘governmental agent’ within the
ABM, our prototype linked the ABM and an existing
solver for optimisation questions and allowed them to
communicate during the course of the simulation.

In our case study for funding photovoltaic installa-
tions in Italy’s Emilia-Romagna region, our integrated
simulation has shown significant improvements on pre-
vious results by using the optimisation component in-
stead of less sophisticated approaches.

Although we present the integrated ABM-optimisation
approach with the help of the Emilia Romagna PV
adoption case study in this paper, our approach is not
limited to this case study and can be applied to a large
variety of topics. It is in particular useful when macro-
level decision-making and its influence on the agent de-

cisions are of importance for the simulation. With our
approach one can both use the ABM to understand
and analyse the agent decision-making behaviour at the
micro-level and at the same time to make optimisation
decisions at the macro-level. As noted before, because
of the interaction of the two components during the
execution of the simulation, the macro-level decisions
influence the agents at the micro-level and therefore
influence the whole simulation result. This interaction
between the different levels allows for the study of the
complete system, as well as the interaction between lev-
els.

Our future work can be divided into two streams.
The first stream is the extension of the ABM and the
exploration of other scenarios for the Emilia Romagna
case study. In particular, applying the same method-
ology to an entire country, such as Italy, would be of
practical interest.

The second stream concerns the generalization of the
integration methodology and its application to other
domains, as well as refining the current interactions
between the components. In particular, multi-objective
optimisation problems and the effect of optimising mul-
tiple, independent decisions at each time step on the
entire simulation can be explored.
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