
Procedia Computer Science 00 (2011) 1–10

Procedia Computer
Science

Biomedical and Bioinformatics Challenges to Computer Science

Exact Closest String as a
Constraint Satisfaction Problem

Tom Kelsey1 and Lars Kotthoff

University of St Andrews

Abstract

We report the first evaluation of Constraint Satisfaction as a computational framework for solving closest string
problems. We show that careful consideration of symbol occurrences can provide search heuristics that provide several
orders of magnitude speedup at and above the optimal distance. We also report the first analysis and evaluation – using
any technique – of the computational difficulties involved in the identification of all closest strings for a given input set.
We describe algorithms for web-scale distributed solution of closest string problems, both purely based on AI backtrack
search and also hybrid numeric-AI methods.

Keywords:

1. Introduction
The closest string problem (CSP) takes as input a set of strings of equal length over a fixed alphabet. A solution is

a string with the smallest possible maximum Hamming distance from any input string. (Strictly speaking, distance with
respect to any suitable metric can be minimised – Hamming distance is the standard edit distance metric used for these
problems.) CSP has applications in coding and information theories, but when the input strings consist of nucleotide
sequences over the letters A, C, G and T, the CSP has important applications in computational biology. Examples
include the identification of consensus patterns in a set of unaligned DNA sequences known to bind a common protein
[1] and DNA motif representation with nucleotide dependency [2]. Our aim is to provide theoretical and practical
results – together with empirical supporting evidence – that lead to improved CSP solution for biological problems, so
in this paper the base alphabet Σ will always consist of four symbols.

A Constraint Satisfaction Problems (CSP) consists of a set of constraints involving variables taking discrete values.
A solution to a CSP is an assignment of values to variables such that no constraint is violated. CSP solvers are used for
many important classes of problems for which solutions must take discrete values, but, to our knowledge, the closest
string problem has not been modelled and solved as a CSP. The research question under consideration, therefore, is “Is
CSP a useful framework for solving CSP instances?”

In this paper we investigate approaches to such models. We demonstrate that a careful choice of search heuristic
can give several orders of magnitude speedup in general. We show that CSP modelling and solution are effective tools
for the related problem of obtaining all closest strings. We consider the distribution of closest string problems across
a cloud (or grid) of computing nodes, and identify two super-linear speedups. Finally we identify the strengths and

1Corresponding author tom@cs.st-andrews.ac.uk

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 2

weaknesses of existing numeric approaches, and suggest hybrid discrete and numeric methods that combine the best
features of CSP and numeric search.

In the rest of this introduction we discuss existing methods for the CSP with respect to theoretical complexity
results, give brief overviews of Constraint Satisfaction theory and the Minion CSP solver, and formally define the
theoretical concepts upon which the research is based. In Section 2 we model closest string problems as CSPs, compare
search heuristics, and provide results for the all closest string problem. We describe distributed algorithms in Section 3,
both for pure CSP models and heuristics, and for hybrid CSP-numeric methods. In Section 4 we discuss the relative
strengths and limitations of CSP as a framework for closest string identification.

1.1. Computational Complexity and Existing Methods

CSP has been shown to be NP-complete for binary strings [3] and for alphabets of arbitrary size [4]. Intuitively
there are |Σ| choices for each of the L positions in any candidate closest string where Σ is the alphabet, and for any
algorithm that fails to check each of this exponential number of cases one could devise a CSP for which the algorithm
returns an incorrect result.

Approximate solutions to within (4/3 + ε) of the minimal d can be obtained in polynomial time [4, 5], with several
practically useful implementations available, notably those based on genetic algorithms [6]. However, in this paper
we are concerned with first finding exact solutions, and then (given that we know the minimal distance d) finding all
closest strings that are within d of S . Clearly, an approximate method will not, in general, identify the minimal d, and
therefore can not be used as a basis for finding all solutions.

Excellent exact results – provided that close bounds have already been identified – have been obtained by modelling
and solving the CSP as an Integer Programming Problem [7]. This form of search differs from the backtrack search
used by CSP solvers by having a much less organised search pattern. This is often advantageous, but can be a hindrance
when searching for all solutions: IP branch and bound is optimised for optimisation, as it were, rather than exhaustive
search for all candidates for a constant objective function. If the IP formulation suggested in [7] is used, then the
feasible region deliberately excludes optimal solutions in order to reduce the numbers of variables, in which case no
search for all solutions can be made.

A linear time algorithm exists for solutions to the CSP for fixed distance d [8]. The exponential complexity is now
in the coefficient, as the method is O(NL + Nddd) where the problem has N strings of length L.

1.2. Constraint Satisfaction Problems

Definition. A Constraint Satisfaction Problem Υ is a set of constraints C acting on a finite set of variables ∆ :=
{A1, A2, . . . , An}, each of which has a finite domain of possible values Di := D(Ai) ⊆ Λ. A solution to Υ is an
instantiation of all of the variables in ∆ such that no constraint in C is violated.

The Handbook of Constraint Programming [9] provides full details of CSP theory and techniques. A key observation
is that different models (i.e. choices of variables, values and constraints) for the same problem (or class of problems)
will often give markedly different results when the instances are solved, but, as with numeric Linear, Mixed-Integer and
Quadratic Programming, there is no general way to decide in advance which candidate models and heuristics will lead
to faster search.

A typical solver operates by building a search tree in which the nodes are assignments of values to variables, and the
edges lead to assignment choices for the next variable. If a constraint is violated at any node, then search backtracks. If
a leaf is reached, then all constraints are satisfied, and the full set of assignments provides a solution. These search trees
are obviously exponential, and in the worst-case scenario every node may have to constructed. However, large-scale
pruning of the search tree can occur by judicious use of consistency methods. The idea is to do a small amount of extra
work that (hopefully) identifies variable-value assignments that are already logically ruled out by the current choice of
assignment, meaning that those branches of the search tree need not be explored. While there are no guarantees that
this extra work is anything other than an overhead, in practice enough search is pruned to give efficient solutions for
otherwise intractable problems.

Heuristics exist for choices of variable-value pair for the next node, and as before these may have no effect on the
number of nodes visited. Again, in general, variable and value orderings designed for specific problem classes can
lead to several orders of magnitude reduction in the number of nodes needed to find a solution. Standard choices for
variable orderings include random, smallest domain, largest domain, most-constrained, least-constrained, etc. Results
will vary with the problem class and model under consideration.

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 3

1.2.1. The Minion CSP solver

The constraint solver Minion [10] uses the memory architecture of modern computers to speed up the backtrack
process compared to other solvers. Minion has an extensive set of constraints, together with efficient propagators that
enforce consistency levels very rapidly. Minion has been used to solve open problems in combinatoric algebra [11],
finding billions of solutions in a search space of size 10100 in a matter of hours. Minion is used for this investigation as
it offers both fast and scalable constraint solving, which are important factors when solving closest string problems.

1.3. Formal Definitions and Results

Before proceeding to the technical Sections, we first formalise Hamming Distances and Diameters, and closest
strings:
Definition. Let S 1 and S 2 be strings of length L over an alphabet Σ. Let D be the binary string of length L such that

D(i) =

{
1 S 1(i) , S 2(i)
0 otherwise

The Hamming Distance hd(S 1, S 2) is defined as the sum from i = 1 to L of the D(i).
Definition. Let S = {S 1, S 2, . . . , S N} be a set of strings of length L over an alphabet Σ. A Closest String to S is defined
as any string CS of length L over Σ such that

hd(CS , S i) ≤ d ∀i ∈ {1, 2, . . . ,N}

with d being the minimal such distance for S . The Hamming diameter HD of S is defined as

HD(S) = max(hd(S i, S j)) ∀i, j ∈ {1, 2, . . . ,N}.

A solution to a closest string problem involving the strings in S is therefore a string CS and a minimal distance d
such that each member of S is within d of CS . The Hamming distance is an edit distance that quantifies the number
of substitutions from Σ required to turn one string into another. It is easy to show that Hamming distance is a metric,
satisfying the triangle inequality. It is clear that the Hamming Diameter is an upper bound for the distance of a closest
string: a candidate closest string at a greater distance can be replaced by any member of S , reducing the maximal
distance to HD(S). We can obtain a lower bound for the distance of a closest string by observing that the distance can
not be less than half the Hamming Diameter:
Lemma 1. Let S = {S 1, S 2, . . . , S N} be a set of strings of length L over an alphabet Σ. A closest string CS to S must
be within dHD(S)/2e of S .

Proof. Let S i and S j be two strings from S for which the Hamming Diameter is achieved, and let S k be any other
string of length L over Σ. By the triangle inequality H(S) = hd(S i, S j) ≤ hd(S i, S k) + hd(S j, S k). If (without loss of
generality) hd(S i, S k) < dHD(S)/2e then hd(S j, S k) ≥ dHD(S)/2e. Hence any distance less than dHD(S)/2e can not
be a maximal distance from S k to any string in S .

Search space reduction can be achieved by noting that any value not appearing in position j of any of the strings in
S need not appear in a closest string solution. It should be noted that this only applies when searching for the first
optimal solution. When searching for all solutions, any symbol from Σ can, in principle, appear at any position in CS .
Lemma 2. Let S = {S 1, . . . , S N} be defined as in Lemma 1. Let Σ j for j ∈ 1, 2, . . . , L denote the subset of Σ obtained
by selecting every symbol that appears in position j of a string in S . Then any symbol in position j of a closest string
to S must also be in Σ j.

Proof. Suppose s in Σ \Σ j appears in position j of a solution CS . Let CS be the string consisting of CS with s replaced
by a symbol from Σ j at position j. Then CS is strictly closer to those strings in S with that symbol at that position, and
distance to all other strings is unchanged. Hence if the current d is optimal for CS , it remains optimal for CS .

The final definition needed for this investigation encapsulates frequencies of symbol appearances per string position,
and will be used in Section 2.1 to direct backtrack search for closest strings.
Definition. Let S = {S 1, . . . , S N} be a set of strings of length L over an alphabet Σ. A Position Weight Matrix (PWM)
for S is an |Σ| × L matrix with entries PMS S (i, j) defined as the frequency of symbol i appearing at position j in S .
An example Position Weight Matrix is given in Figure 1.

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 4

a G g t a c T t
C c A t a c g t
a c g t T A g t
a c g t C c A t
C c g t a c g G

A 3 0 1 0 3 1 1 0
C 2 4 0 0 1 4 0 0
G 0 1 4 0 0 0 3 1
T 0 0 0 5 1 0 1 4

Table 1: Five strings of length 8 are shown above, with their PWM shown below.

2. Closest String as a Constraint Satisfaction Problem
Using the terminology from Sections 1.2 and 1.3, we now construct a CSP instance from a given closest string

problem. For the purposes of this paper, the alphabet Σ consists of the numbers 1, 2 ,3 and 4, representing A, C, G and
T respectively. Clearly this artificial restriction can easily be relaxed in order to model arbitrary alphabets.

Given S , a set of N strings of length L over alphabet Σ, we first compute the Hamming Diameter HD(S) and use
this to provide a lower bound, dmin, for the optimal distance d, as shown in Lemma 1. Υ(S , dmin,HD(S)) denotes the
CSP instance in which the set of variables is ∆ := ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4, where

1. ∆1 is the array [CS 1,CS 2, . . . ,CS L] of variables representing the closest string, each such variable having
domain 1 through 4

2. ∆2 is an N × L array of binary variables used to calculate Hamming Distances from ∆1 to the input strings S
3. ∆3 is the array [D1,D2, . . . ,DN] of variables representing the distance of each string in S to the current CS

candidate, each such variable having domain dmin through HD(S)
4. ∆4 is the single distance variable d with domain dmin through HD(S).

The constraints are:

1. ∆2(i, j) = 0 iff S i(j) = ∆1(j)
2. ∆3(k) is the sum of row k of ∆2

3. ∆4 is the maximum value appearing in ∆3

4. ∆4 is minimised: if a solution is found with ∆4 = d, search for another solution with ∆4 = d − 1 (unless d = dmin).

∆1 are the search variables: nodes of the search tree consist of values assigned to these variables. ∆4 is the objective
function (or cost function). A returned solution is ∆1 ∪ ∆4, a closest string together with the optimal distance. Solving
Υ(S , dmin,HD(S)) is guaranteed to return a solution, although it is not impossible that all 4L nodes are visited for every
current minimal d. Restricting the domains of ∆3 will save computational effort when a solution is found with d = dmin

and will have no effect otherwise. Restricting the domains of the ∆1 variables in line with lemma 2 also reduces the
search space, although the restrictions can not apply when searching for all solutions.

To find all closest strings Υ(S , dmin,HD(S)) is solved to obtain CS and dopt. By restricting the domains of ∆3 to
dmin through dopt and removing the optimisation constraint we obtain a new CSP Υ∗(S , dmin, d) which can be solved for
all solutions. The search undertaken to find the first solution CS need not be repeated: constraints can be added that
rule out those parts of the search tree already processed. This will however add an exponential number of constraints to
the problem. It should also be noted that CS and d need not be obtained using the Constraint Satisfaction approach:
any method that returns an optimal solution can be used to create an all closest strings CSP.

2.1. Position Weight Matrix Variable and Value Ordering

We now use results from computational biology to devise a bespoke variable and value ordering schema for
Υ(S , dmin). By precalculating a Position Weight Matrix for S as defined in Section 1.3 we can order the search variables
by maximum frequency. For each variable, we order the values assigned during search by decreasing relative frequency.
Tie breaks are either random or by least index. By Lemma 2, when seeking a single solution it is safe to exclude values
that don’t appear at a given position from their respective variable domains before search. The idea behind this heuristic
is that search starts close to (in the sense of maximum likelihood) an optimal solution. Only if no such solution is found
does search progress to less likely (but not impossible) parts of the search tree .

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 5

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

number of strings

speedup

length = 10
0.0279955 s

length = 15
0.055491 s

length = 20
1.132327 s

length = 25
54.410228 s

length = 30
1346.360321 s

3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

0.0001

0.1000

100.0000

100000.0000

number of strings

speedup

length = 10
0.000001 s

length = 15
0.0039995 s

length = 20
0.1934705 s

length = 25
17.266875 s

length = 30
325.193563 s

Figure 1: Empirical data from 200 instances of 3, 4, 5 and 6 strings of lengths 10, 15, 20, 25 and 30. For each combination of parameters, 10 random
instances were generated with results summarised in the boxes which show median values (thick line), 25th–75th percentiles (boxed) and 0th–100th
percentiles (dashed lines). In the left panel we compare the exact optimal solution times. In the right panel we show the times taken to obtain
an optimal result, omitting the time needed to certificate that result. In both figures the y axis shows the speedup of Position Weight Matrix over
Smallest Domain First ordering on a logarithmic scale, and the times given below the string lengths are the median CPU time taken over all strings of
that length. The experiments were conducted on a dual quad-core 2.66 GHz Intel X-5430 processor with 16 GB of RAM.

2.2. Comparison of Search Heuristics

In this Section we test the hypothesis that PMS-based search heuristics reduce the search needed for solutions to
Υ(S , dmin) CSP instances when compared to a standard heuristic. Figure 1 illustrates the results from 200 closest string
problems. Each problem was run first with smallest domain variable ordering and ascending value ordering (Minion
defaults), and then with PWM-based variable and value ordering as described in Section 2.1.

For exact solutions – upper panel of Figure 1 – we observe an improvement of PWM over SDF in almost all cases.
The speedup is as high as several orders of magnitude in some cases. The difference is statistically significant at the
0.001 level. These results are as expected: the PWM reflects the maximum likelihood of a closest string, so a search
that respects these likelihoods will nearly always be highly efficient, but will visit very many non-essential nodes on the
few occasions that the maximum likelihood does not lead to a closest string. A key observation is that the magnitude of
speedup increases with increasing string length, which is highly encouraging since the complexity of closest sting is
exponential in string length.

If we consider only the search effort needed to find an optimal solution (not taking into account the work needed to
provide a certificate of optimality by ruling out closer strings at lower distance) then the speedup of PWM over smallest
domain is at the level of orders of magnitude in the general case – Figure 1, lower panel. This indicates that heuristics
are less important when searching exhaustively at a lower than optimal distance: most of the practical complexity of
closest string search is associated with providing certificates of optimality, rather than identifying close strings which
turn out to be optimal.

Figure 2 shows that we achieve a good approximation very quickly, in line with existing results that guarantee
approximation to four thirds of optimality in polynomial time [4, 5]. This motivates the hybrid symbolic-numeric
methods detailed in Section 3.4: practitioners can use CSP to obtain good bounds quickly, then use either numeric
methods or AI search methods – or indeed both using a distributed architecture – to explore the remaining search space
for an exact solution plus certificate of optimality.

Taken together the results indicate that:
1. CSP search with PWM variable-value ordering will (in general) efficiently find candidate solutions to closest

string problems with decreasing maximum distance d
2. CSP search with a standard search ordering can be used to exhaustively rule out the distance below the optimal d
3. our empirical evidence is in line with previously reported results: an approximate solution to closest string can

be computed in polynomial time, but computation of the necessary certificates of optimality remains intractable
in the general case

4. sequential, single-processor CSP search for problems having more strings of greater length (and possibly a larger
alphabet) will become intractable due to the inherent NP-completeness of closest string.

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 6

0.0001 0.0100 1.0000 100.0000 10000.0000

1.0

1.2

1.4

1.6

1.8

time [s]

times optimal distance

Figure 2: Convergence towards optimal Hamming distance. The upper line is the maximum relative distance, the lower line the minimum and the
middle line the mean of the 200 experiments performed. The y axis denotes multiples of the optimal distance, the x axis denotes CPU time for the
PWM heuristic on a logarithmic scale. The experiments were conducted on a dual quad-core 2.66 GHz Intel X-5430 processor with 8 GB of RAM.

Figure 3: Empirical data from 6 instances of 5 randomly generated strings of length 25. SDF and PWM indicate smallest domain and position weight
heuristics respectively. All timings were calculated using a dual quad-core 2.66 GHz Intel X-5430 processor with 16 GB of RAM.

2.3. All Closest Strings

To our knowledge, no study has investigated the problem of finding all closest strings for a given set S . We
investigate the effect that modelling has on the set of all solutions. In our CSP model described in Section 2 we reduce
the search space for a first solution by forbidding any variable to take a value that is not present at that position in one
of the input strings. The questions are:

1. Are many otherwise closest strings ruled out by these restrictions?
2. How much extra computational effort is required to identify each and every closest string?

In Figure 3 we show the results of sample calculations for six instances of 5 randomly generated strings of length
25. We see that in all cases (columns headed PWM Restricted Domains) it is relatively easy using Minion to identify all
closest strings if we restrict search to those alphabet symbols that have non-zero values in the position weight matrix for
the instance. We also find that search using PMW ordering heuristics performs marginally better than straightforward
smallest domain heuristics.

When the variable-value assignments that have been ruled out because the value does not appear at the variable’s
position in any element of S are added back to the domains of the search variables, we can perform full search for
all closest strings (Figure 3, columns headed by Unrestricted Domains). The percentage of new closest strings found
ranges from 0% to 22%, but increase in search is typically two orders of magnitude. It should be noted that:

1. Minion is searching far fewer than the 425 possible search nodes for each instance, the majority being pruned by
efficient propagation of the logical consequences of the variable-value assignments implicit at each node, and

2. Minion is searching 250,000 – 300,000 nodes per second in addition to the work involved in identifying search
sub-trees that need not be explored.

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 7

3. Distributed and Hybrid Computing Strategies

Input :A CSP Υ, a cutoff period Tmax and a branching factor K
Output :Either the first solution, or a guarantee that there are no solutions

while not Solved?(Υ) do
Send Υ to a node
Run solver with input Υ for 0 ≤ t ≤ Tmax

if Solved?(Υ) then
Return solution
else

Υ← Υ with new constraints ruling out search already performed
Split Υ into K subproblems Υ1,Υ2, . . . ,ΥK

do in parallel
for 1 ≤ k ≤ K do

Solve(Υk, Tmax,K)
end

end
end

end
Algorithm 1: A recursive distributed algorithm to solve any CSP

3.1. Distributed CSP

Given the inherently exponential increase in search effort involved in providing a certificate for an optimal closest
string distance by ruling out any closest strings with with lower distance, the exact solution of large-scale problems is
not expected to be tractable using purely sequential search. In this Section we describe algorithms that distribute search
across multiple compute nodes. These algorithms will solve closest string problems either on a cluster (a local group of
homogeneous nodes), a grid (a more loosely coupled, heterogeneous and geographically dispersed set of nodes), or a
cloud (a set of an unknown number of nodes in unknown locations, each having unknown architecture and resource).
Generally speaking, a cluster is more controllable but smaller than a cloud, with a grid being either the best or worst of
both worlds, depending on one’s point of view. For our purposes we do not require any communication across nodes,
and can therefore treat the three distributed paradigms as a single approach. The only disadvantage to using a cloud is
that empirical evaluation hindered since the times reported in virtual machines are not reliable. This is because clocks
of virtual machines can be slowed down or sped up by the VM management software. We therefore prototype our
computational methodology on a cluster, and, when satisfied that it is efficient, deploy using a cloud to take advantage
of the very large number of nodes available.

Algorithm 1 gives the basic structure of our distributed search. The predicate Solved? returns true whenever the
input CSP finds the first solution or finishes searching the entire tree without finding a solution. It returns false if either
the computation has timed out, or the node has stopped work for some reason. If all solutions to the CSP are required,
then we modify Algorithm 1 so that all solutions found so far are returned whenever the Solved? predicate fails.

3.1.1. Distributed CSPs Using Minion

In common with Integer Programming problems, CSPs distribute naturally across multiple compute nodes [12].
Significant research has been invested in the distribution of CSPs across multiple computers [13, 14, 15]. In particular
the area of balancing the load among the nodes is an area of active research [16].

We choose a technique that does not impose any constraints on the problem to be solved and is targeted towards
very large problems. Our algorithm closely follows Algorithm 1 – we run Minion with a time out and when this time
out is reached, we split the remaining search space into two parts. The subproblems are inserted into a FIFO queue and
processed by the computational nodes, splitting them again if necessary.

One of the drawbacks of our approach is that it does not parallelise small problems well. For n compute nodes, we
only achieve full capacity utilisation after log2 n splits, i.e. after timeout × log2 n seconds. We do not consider this to
be a limiting factor however because the split timeout can be adapted dynamically to at first quickly split the problem
and when full utilisation has been achieved increase it. For the large problems we have focused on when implementing
this technique, requiring days or even years of CPU time, this is not a limiting factor.

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 8

The main advantage of our way of distributing problems is that we explicitly keep the split subproblems in files.
This means that at any point we can stop, suspend, resume, move or cancel the computation and lose a maximum of
timeout × n seconds of work, much less in practice. Apart from contributing to the robustness of the overall system,
we can also easily move subproblems that cannot be solved using the available computational resources, for example
because of memory limitations, to nodes with a higher specification that are not always available to us.

In the absence of global symmetry breaking constraints that can affect different parts of the search tree, it is easy to
subdivide a typical CSP into several non-overlapping sub-problems. Although there is an inherent latency in sending
problem instances to, and receiving solutions from, either a grid or a cloud, for large enough problems a speedup linear
in the number of compute nodes is achieved. Preliminary results using a computational grid indicate that a super-linear
speedup can be achieved using Minion, whenever a root node consistency check reduces the search tree. There is no
guarantee of this, however, since root consistency checks are heuristics that will at times provide no benefit for the
extra work involved.

Cloud computing is becoming an important computational paradigm, and the Minion developers have produced
robust, fault-tolerant, methods for distributing Minion instances across different underlying architectures, including
clouds. By leveraging existing technologies, in particular the Condor distributed computing framework [17], we
can distribute problems across hundreds of CPUs and combine cluster, grid and cloud architectures for web-scale
computing. This enables us to tackle problems which have previously been thought to be unsolvable because of the
amount of computation required to find a solution.

3.2. Distributed Closest String

Input :Υ(S , dmin,HD(S)), Tmax and K
Output :A closest string to S with its maximum Hamming distance to S

for 0 ≤ t ≤ Tmax do
RunΥ(S , dmin,HD(S)) in Minion
if Solved?(Υ(S , dmin,HD(S))) then

Return CS and d, and halt all computation
else dhigh ← the best d found so far
Υ(S , dmin,HD(S))← Υ(S , dmin, dhigh) plus constraints ruling out search already performed

end
end
do in parallel

for dmin ≤ dlow < dhigh do
DistSolve(Υ∗(S , dmin, dlow), Tmax, K)
if Solved?(Υ∗(S , dmin, dlow)) then

Return CS and d = dlow, and halt all computation
else Update all (sub-)instances with new lower bound dlow + 1

end
end
for 2 ≤ k ≤ K + 1 do

DistSolve(Υk(S , dmin, dlow), Tmax, K)
if Solved?(Υk(S , dmin, dhigh)) with dnew < dhigh then

if dnew = dhigh − 1 then Return CS and d = dnew, and halt all computation
else Update all (sub-)instances with upper bound dhigh = dnew

end
end

end
if not Solved?(Υk(S , dmin, dhigh) ∀ k) ∧ not Solved?(any fixed dlow instance) then

Return current dhigh as d, and the string found that achieved distance dhigh as CS
end

Algorithm 2: Solve the CSP Υ(S , dmin,HD(S)) by distributing search for high and low distances

Algorithm 2 describes our approach to the distributed solution of closest string problems formalised as Constraint
Satisfaction problems. We first run Minion on the original problem with the PWM ordering heuristic as a single process.
Our empirical evaluation in Section 2.2 indicates that nearly always this process will highly efficiently lower the upper

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 9

bound for the problem. Once we have a reasonable upper bound, we start searching for the optimal distance both above
and below. From above, we carry on optimising as before, but we use the recursive DistSolve algorithm to distribute.
From below we create instances each having a fixed distance, the idea being to exhaustively rule out any closest
strings at these distances. These instances are run on the computational nodes at the same time as the optimisation
sub-problems. If at any stage we obtain a candidate closest string at a distance for which all lower distances have been
ruled out, then this is our solution. This can happen both from above and below.

As mentioned in Section 3.1.1, we expect a super-linear speedup by performing a root node consistency check for
each sub-instance. By keeping track of the best distance obtained so far during search from above, and of any lower
distances for which no solution has been found, we expect to obtain a further super-linear speedup in the majority of
instances. A large part of the search tree is pruned by updating all instances (either waiting for input to a node, or
currently being processed by a node) with improved distance bounds as they become available.

3.3. Preliminary Evaluation of Distributed Closest String

For a first evaluation, we ran the algorithm on 6 random strings of lengths 25, 26, 27, 28, 29 and 30. We chose
a time limit of 1 hour to reduce communication overheads. The problems with strings of length 25, 26 and 27 were
solved to completion within this limit.

The remaining three instances were split after one hour and distributed across multiple machines. As suggested by
Figure 2, the solutions converged towards the optimal distance extremely quickly. For only one of the instances was a
better Hamming distance found in one of the sub-instances. The remaining sub-instances proved the optimality of the
previously found solution.

These tests demonstrate the practical applicability of our distributed approach. We have not performed a large-scale
evaluation, nor have we obtained evidence for the super-linear speedups associated with bounds updates and an
increased number of consistency checks at the root of sub-instances. Our experience with the distributed solution
of other classes of CSP suggests that our system will scale seamlessly to grids or clouds containing an essentially
unlimited number of compute nodes: there is no communication across nodes, a node failure can be recovered from
with no extra search needed (the search tree already explored is reported whenever search is interrupted for any reason),
and the order in which sub-instances are solved can be tuned.

3.4. Hybrid Methods

Input :Υ0(S , dmin,HD(S))
TOL, a limit for the gap between the highest and lowest computed distances

Output :A closest string to S with its maximum Hamming distance to S

Seek closer distance bounds for Υ0(S , dmin,HD(S)) using CSP alone;
while |dhigh − dlow| < TOL do

Run Algorithm 2 on Υ0(S , dmin,HD(S))
Output dlow and dhigh when updated

end
Once bounds are close enough, send to numeric IP or linear time search;
if TOL > 1 ∧ |dhigh − dlow| ≤ TOL then

Formulate the remaining problem as an Integer Programming problem
Search for solution using numeric branch and bound

end
if |dhigh − dlow| = TOL = 1 then

Formulate the remaining problem as a fixed d instance
Search for solution using linear time methods

end
Algorithm 3: Solve the CSP Υ(S , dmin,HD(S)) using hybrid CSP and numerical methods

The empirical results obtained so far suggest that CSP formulation with PWM ordering is an effective approach for
ruling out high distances: Minion will often find a first solution very quickly, given the search space involved. However,
at least for the approach suggested in this paper, CSP formulation requires much more time to provide a certificate
that an optimal solution is indeed optimal. As discussed in Section 1.1, efficient methods have been reported in the
literature for when the upper and lower distance bounds are close [7], and for problems where the distance is fixed [8].

T.W. Kelsey / Procedia Computer Science 00 (2011) 1–10 10

In this Section we propose a hybrid approach that aims to take advantage of the best methods available. Algorithm 3
takes a closest string instance and partially solves it using Algorithm 1. If the upper and lower bounds come to within a
pre-defined tolerance, then numeric branch and bound methods are used to solve an Integer Programming formulation
of the problem not yet solved by Minion. If the distance under consideration ever becomes fixed, then the linear time
methods set out in [8] can be applied.

It should be stressed that these three methods (CSP, IP branch and bound, and linear time) need not be exclusive:
once tolerance achieving bounds are found by Minion, the distributed Minion search can continue, and the CSP and
numeric methods are then competing to find the first solution. This of course pre-supposes that computational resource
is not a problem, but that is why we are using web-scale facilities in the first place.

4. Discussion
We have performed the first evaluation of Constraint Satisfaction as a computational framework for solving closest

string problems. We have shown that careful consideration of symbol occurrences can provide search heuristics that
give, in general, several orders of magnitude speedup when computing approximate solutions. We have also shown that
CSP is less effective when searching for certificates of distance optimality. This result motivated our detailed description
of algorithms for web-scale distributed CSP computation, and also our design of hybrid distributed algorithms that can
take advantage of the strengths of both numeric and CSP computational techniques.

We have also performed the first analysis of the computational difficulties involved in the identification of all
closest strings for a given input set, irrespective of the computational framework used. Our results for all closest strings
motivate the question of which definition of self-similarity is suitable for the computational biology setting. In terms
of information theory the all closest strings problem can not exclude alphabet symbols and still be correct. However,
when seeking to quantify the self-similarity of DNA sequences it may be perfectly justifiable to exclude closest strings
that can have no symbol in common with the sequences in question at a given point. If this were to be the case, then the
computational efficiency of the search for all closest strings would be greatly increased (Figure 3).

We have designed, implemented and deployed a computational methodology for distributed search for closest string
solutions. This contribution provides a practically useful means of attacking the NP-complete instances by division
into smaller sub-problems. Our system is guaranteed never to perform the same search twice, will recover seamlessly
from any unforseen loss of compute nodes, and is extendable to web-scale clouds.

4.1. Acknowledgments

Tom Kelsey is supported by UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/H004092/1.
Lars Kotthoff is supported by a Scottish Informatics and Computer Science Alliance (SICSA) studentship.
[1] G. Z. Hertz, G. W. Hartzell, G. D. Stormo, Identification of consensus patterns in unaligned DNA sequences known to be functionally related.,

Comput Appl Biosci 6 (2) (1990) 81–92.
[2] F. Chin, H. C. Leung, DNA motif representation with nucleotide dependency., IEEE/ACM transactions on computational biology and

bioinformatics / IEEE, ACM 5 (1) (2008) 110–119.
[3] M. Frances, A. Litman, On covering problems of codes, Theory Comput. Syst. 30 (2) (1997) 113–119.
[4] J. K. Lanctot, Some string problems in computational biology, Ph.D. thesis, University of Waterloo (2004).
[5] M. Li, B. Ma, L. Wang, On the closest string and substring problems, J. ACM 49 (2) (2002) 157–171.
[6] B. A. Julstrom, A data-based coding of candidate strings in the closest string problem, in: GECCO, ACM, 2009, pp. 2053–2058.
[7] C. N. Meneses, Z. Lu, C. A. S. Oliveira, P. M. Pardalos, Optimal solutions for the closest-string problem via integer programming, INFORMS

J. on Computing 16 (4) (2004) 419–429.
[8] J. Gramm, R. Niedermeier, P. Rossmanith, Exact solutions for closest string and related problems, in: Proc. ISAAC, 2001, pp. 441–453.
[9] F. Rossi, P. van Beek, T. Walsh (Eds.), The Handbook of Constraint Programming, Elsevier, 2006.

[10] I. P. Gent, C. Jefferson, I. Miguel, Minion: A fast scalable constraint solver, in: Proc. ECAI, 2006, pp. 98–102.
[11] A. Distler, T. Kelsey, The monoids of orders eight, nine & ten, Ann. Math. Artif. Intell. 56 (1) (2009) 3–21.
[12] O. Etzioni, T. Ishida, N. Jennings (Eds.), Distributed constraint satisfaction: foundations of cooperation in multi-agent systems, Springer-Verlag,

London, UK, 2001.
[13] Z. Collin, R. Dechter, S. Katz, On the feasibility of distributed constraint satisfaction, in: Proc. IJCAI, 1991, pp. 318–324.
[14] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara, The distributed constraint satisfaction problem: Formalization and algorithms, IEEE Trans.

on Knowl. and Data Eng. 10 (5) (1998) 673–685.
[15] L. Michel, A. See, P. V. Hentenryck, Parallelizing constraint programs transparently, in: CP, 2007, pp. 514–528.
[16] C. C. Rolf, K. Kuchcinski, Load-balancing methods for parallel and distributed constraint solving, in: CLUSTER, 2008, pp. 304–309.
[17] T. Tannenbaum, D. Wright, K. Miller, M. Livny, Condor – a distributed job scheduler, in: T. Sterling (Ed.), Beowulf Cluster Computing with

Linux, MIT Press, 2001.

