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Abstract
The Travelling Salesperson Problem (TSP) is one of the best-studied NP-hard prob-
lems. Over the years, many different solution approaches and solvers have been
developed. For the first time, we directly compare five state-of-the-art inexact solvers—
namely, LKH, EAX, restart variants of those, and MAOS—on a large set of well-known
benchmark instances and demonstrate complementary performance, in that different
instances may be solved most effectively by different algorithms. We leverage this com-
plementarity to build an algorithm selector, which selects the best TSP solver on a per-
instance basis and thus achieves significantly improved performance compared to the
single best solver, representing an advance in the state of the art in solving the Eu-
clidean TSP. Our in-depth analysis of the selectors provides insight into what drives
this performance improvement.

Keywords
Travelling Salesperson Problem, automated algorithm selection, performance model-
ing, machine learning.

1 Introduction

The Travelling Salesperson Problem (TSP) is arguably the most prominent NP-hard
combinatorial optimisation problem. Given a set of n locations—which, by convention,
are called cities—and pairwise distances between those cities, the objective in the TSP is
to find the shortest round-trip or tour through all cities, that is, a sequence in which ev-
ery city is visited exactly once, the start and end cities are identical, and the total length
of the tour is minimal. Here, we consider the 2D Euclidean TSP, in which the cities corre-
spond to points in the Euclidean plane and the distances are Euclidean distances. This
is the most commonly studied special case of the TSP, and, like the general TSP, it is
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known to be NP-hard. The Euclidean TSP has important applications, for example, in
the fabrication of printed circuit boards as well as in transportation and logistics.

There are two types of TSP algorithms: exact algorithms, which are guaranteed to
find an optimal solution to any TSP instance when run to completion and produce
a proof of optimality; and inexact algorithms, which cannot guarantee or prove the
optimality of the solutions found. Intriguingly, the state of the art for both types of
algorithms has been defined by a single solver each for many years: the exact solver
Concorde (Applegate et al., 2007) and the inexact solver LKH (Helsgaun, 2009). Further-
more, LKH typically finds high-quality and even optimal solutions much more quickly
than Concorde. For instance, Dubois-Lacoste et al. (2015) showed that LKH outperforms
Concorde on rather small instances (consisting of 1 500 cities), and recently, Mu et al.
(2017) demonstrated that the performance gap increases with instance size. Therefore,
for the purpose of finding such optimal solutions, per-instance algorithm selection tech-
niques (see, e.g., Kotthoff, 2014) were previously inapplicable to the TSP.

More recently, improvements in the state of the art in inexact TSP solving in the
form of a new evolutionary algorithm, EAX (Nagata and Kobayashi, 2013), and a new
multi-agent optimization approach, MAOS (Xie and Liu, 2009), have made per-instance
algorithm selection approaches feasible.

In our previous work (Kotthoff et al., 2015), we showed for the first time that per-
instance algorithm selection techniques can be used to improve the state of the art in
inexact TSP solving. Here, we expand this preliminary study by including the MAOS
solver, additional instance features, and structured instance sets. We furthermore per-
form cost-sensitive feature selection for the algorithm selection models. We will show
that this step is crucial to achieve good performance, as otherwise the single best solver
(the restart variant of EAX) dominates. The best selector we achieve substantially im-
proves over this single best solver—by a factor of two when aggregated over our in-
stance set, and up to an order of magnitude on individual instances.

After providing background information on algorithm selection in Section 2, we
describe the solvers, the TSP instance sets, and the features we use as the basis for per-
instance selection in Section 3. We then define our benchmark in Section 4 and describe
the experimental setup in Section 5. We report the performance improvements we have
achieved (Section 6), before concluding with some general observations and directions
for future work (Section 7).

2 Background on Automated Algorithm Selection

The per-instance algorithm selection problem (Rice, 1976) involves selecting from a
set of candidate algorithms the one expected to perform best on a given problem in-
stance. Similar to parallel algorithm portfolios (Huberman et al., 1997; Gomes and Sel-
man, 2001), per-instance algorithm selection leverages complementarity within a set of
solvers.

Algorithm selection systems typically use machine learning to forecast how well the
algorithms in a given set will perform on a given problem instance based on features of
that instance. Some approaches predict the algorithm to use directly, while others aggre-
gate performance predictions to select one or more algorithms from the given set to be
run sequentially or in parallel. Here, we consider the case where exactly one algorithm
is selected per instance.

One of the most prominent and successful systems that employs this approach
is SATzilla (Xu et al., 2008, 2012), which for many years defined the state of the art
in solving the propositional satisfiability problem (SAT), one of the widely studied
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NP-complete problems in artificial intelligence with important applications in hardware
and software verification. Following the initial success of early versions of SATzilla,
other algorithm selection systems have been developed and proven their worth in the
annual SAT competition, such as CSHC (Malitsky et al., 2013), which has also been ap-
plied to the closely related MAXSAT problem.

Algorithm selection systems have also been applied with great success to other
computationally challenging problems, including constraint programming (O’Mahony
et al., 2008), continuous black-box optimisation (Mersmann et al., 2011; Bischl et al.,
2012), mixed integer programming (Xu et al., 2011), and AI planning (Seipp et al., 2012).
There have been several prior studies on algorithm selection for the TSP, for example
Fukunaga (2000) and Pihera and Musliu (2014); however, to the best of our knowledge,
only one of these—our own preliminary study for the work presented here—can claim
to have achieved improvements in the state of the art (Kotthoff et al., 2015). For addi-
tional background on algorithm selection and its application, we refer the interested
reader to the comprehensive survey by Kotthoff (2014).

3 Methodology

We first describe the TSP algorithms (Section 3.1), instance feature sets (Section 3.2),
and benchmark instances (Section 3.3) considered in our study. We then provide an
overview of the supervised learning methods that we utilised as algorithm selectors
(Section 3.4), as well as the statistical tests (Section 3.5) we used to show whether ob-
served performance differences between models are statistically significant.

3.1 TSP Solvers

We selected three high-performance inexact TSP solver for our study. Based on the lit-
erature, these solvers can be expected to achieve state-of-the-art performance on Eu-
clidean TSP instances, and, considering the different approaches underlying them (as
described in the following), are likely to show complementary strength in performance
across benchmarks.

3.1.1 LKH: Helsgaun’s Lin-Kernighan Heuristic
The Helsgaun variant of the Lin-Kernighan heuristic (LKH) represented a major ad-
vance in inexact TSP solving, and has been the uncontested state-of-the-art method for
finding high-quality solutions to a large variety of TSP instances for many years (Hels-
gaun, 2000, 2009). The Lin-Kernighan heuristic (LK) is a variable-depth search method
that generates complex local search moves by heuristically constructing a sequence of
edge exchanges. LKH, Helsgaun’s variant of LK, is based on exchange sequences us-
ing five (Helsgaun, 2000) or more edge exchanges (Helsgaun, 2009). The iterated ver-
sion of the LKH algorithm restarts the local search process from new solutions that
are obtained by solution perturbations, which are performed using either a random
k-exchange move or a special walk strategy. An approximation of the Held-Karp lower
bound is used to obtain small candidate sets for the local search steps.

We use the most recent version (2.0.7) of LKH,1 denoted simply as LKH in the fol-
lowing. After observing stagnation behaviour for that solver, despite its aforementioned
built-in multistart option, Dubois-Lacoste et al. (2015) enhanced it with a restart mech-
anism that triggers if during n iterations, where n is the sise of the TSP instance, no
improving solution was found. We denote this modified version LKH+restart.

1http://webhotel4.ruc.dk/∼keld/research/LKH/
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3.1.2 EAX: GA with Edge Assembly Crossover
A successful line of research into high-performing evolutionary algorithms for the TSP
are evolutionary algorithms that integrate variants of edge assembly crossover—a re-
combination operator that combines the edges of two parent solutions trying to add
only few, short edges not found in any of the two parents (Nagata and Kobayashi, 1997).
The first such algorithm known to have matched the performance of LKH in finding
very high quality solutions to a broad range of Euclidean TSP instances (as considered in
our work) is EAX, the evolutionary algorithm by Nagata and Kobayashi (2013). In a nut-
shell, EAX exploits improved local and global variants of the edge assembly crossover
operator, specific diversity preservation techniques that use edge entropy measures in
the population replacement scheme, and initialisation of the population by local opti-
misation. For a detailed description of the algorithm and the operators, we refer the
reader to the original publication.

The original version of EAX2 does not support termination upon reaching a given
solution quality and used a complex termination criterion to end runs. Therefore,
Dubois-Lacoste et al. (2015) modified this version to terminate upon reaching a target
solution quality (in our experiments always set to the known optimum for the given
instance) or when a given time limit is exhausted. A second variant restarts whenever
the original termination criterion is met (EAX+restart). Both versions of EAX were also
modified to permit setting a random seed.

We consider the same versions of LKH and EAX as Dubois-Lacoste et al. (2015),
where more details on the algorithms and the restart behaviour can be found.3

3.1.3 MAOS: Multi-Agent Optimisation
In contrast to LKH and EAX, MAOS4 is based on a complex, multi-agent framework-
based optimisation approach, where the agents have only limited knowledge of the
TSP instance and explore possible solutions in parallel (Xie and Liu, 2009). The agents
update the shared environment and thus communicate their acquired knowledge to
the other agents to improve the efficiency of the search process. Specifically, each agent
starts from a set of reference structures, such as disjoint graph elements that can be com-
bined into valid tours, and candidate sets, such as nearest neighbour subgraphs. It then
uses a Markov-chain approach to generate a set of states by applying search operators,
such as local search steps, genetic algorithm crossovers, or simple completion heuris-
tics. There is some evidence in the literature that at least on part of the instance sets we
consider here, MAOS reaches and possibly exceeds the performance of the original ver-
sions of LKH and EAX (Pihera and Musliu, 2014; Xie and Liu, 2009). Similarly to EAX,
we modified MAOS to terminate when reaching a given solution quality; following Xie
and Liu (2009), we set the number of agents to 300.

3.2 Feature Sets

There are several approaches in the literature that attempt to characterise TSP in-
stances by computing features. We focus on the three presented by Mersmann et al.

2https://github.com/sugia/GA-for-TSP
3Dubois et al. kindly allowed us to use their source code for our experiments.
4https://github.com/wiomax/MAOS-TSP
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(2013),5 Hutter et al. (2014),6 and Pihera and Musliu (2014),7 as they comprise a large
and diverse set of features, and we consider the respective feature sets in isolation as
well as combined with each other. Obviously, the cost of computing the feature values
for a given instance can play a major part in the efficacy of an algorithm selection sys-
tem. We therefore added a subset of the features of Hutter et al. (2014) that are cheaper
to compute than the full set. Overall, we used the following five sets of features in our
experiments:

TSPmeta. This set of 68 features was introduced by Mersmann et al. (2013). Its main
focus is on the spatial distribution of the nodes in the Euclidean plane and the distri-
bution of edge costs. It builds upon features first introduced by Smith-Miles and van
Hemert (2011): distance features are based on summary statistics of the edge cost distri-
bution, such as mean edges costs and the fraction of distinct distances. Mode features
capture the modes of the edge cost distribution. The number of clusters and the average
of distances to the cluster centroids based on multiple runs of the GDBSCAN clustering
algorithm (Sander et al., 1998), parameterised with different reachability distance val-
ues ε ∈ {0.01, 0.05, 0.1}, form the set of cluster features. The spread of the nodes in the
Euclidean plane is measured by the area of the convex hull and the fraction of points on
the convex hull. Closeness of nodes is measured by statistics of the (normalised) nearest
neighbor distances. These features are supplemented with statistics of angles between
a node and its two nearest neighbors, as well as statistics on depth and edges costs of a
minimum spanning tree of the corresponding problem instance.

The mean time for computing this feature set was 11.66 seconds per instance, with
the median at 10.5 seconds and a standard deviation of 19.519 seconds.

UBC. The set of all 50 UBC features introduced by Hutter et al. (2014) also builds upon
the feature set by Smith-Miles and van Hemert (2011) and additionally includes degree
and edge costs characteristics of a minimum spanning tree as well as some additional
statistics based on the pairwise distances between nodes. Additionally, Hutter et al.
(2014) introduced local search probing features, that is, features computed from multiple
short runs of LKH. Some of these features are based on the tour lengths of local op-
tima, the number of local search iterations needed to converge into a local optimum
and the estimated number of local optima. Finally, the branch-and-cut tree obtained by
a 2-second run of Concorde was analysed to obtain a set of branch and cut features: the
improvement per cut, the ratio of upper and lower bound after probing and statistics
on the final solution of the underlying linear programming solver. Note that the inter-
section of UBC and TSPmeta is not empty, which results in redundant information.

The mean time of computing this feature set was 19.87 seconds per instance, with
the median at 12.72 seconds and a standard deviation of 96.587 seconds.

UBC (cheap). A subset of 13 computationally cheap features from UBC feature set by
Hutter et al. (2014), excluding local search, branch and cut, and clustering distance
features.

5https://CRAN.R-project.org/package=tspmeta
6http://www.cs.ubc.ca/labs/beta/Projects/EPMs/TSP_features_UBC2012.tar.gz
7http://dbai.tuwien.ac.at/user/pihera/tsp/FeatureComputation_WIN.zip and

http://dbai.tuwien.ac.at/user/pihera/tsp/tsp-feat.zip
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The mean time of computing this set of features was 0.875 seconds per instance,
with the median at 0.6 seconds and a standard deviation of 11.6 seconds.

Pihera. The set of all 287 features from the study by Pihera and Musliu (2014), which
includes the UBC feature set as well as several groups of additional features. New ge-
ometric features include statistics of the edge lengths of the convex hull and the dis-
tances of internal points, i.e., points not located on the convex hull, to the edges of
the convex hull. New local search probing features include the number of tour inter-
sections of locally optimal tours in the plane and statistics of disjoint tour segments
obtained by eliminating a small fraction of the longest edges in the tour. Lastly, the
k-nearest-neighbor (k-NN) graph of the TSP instance served as a source for an exten-
sion of nearest-neighbor features: the normalised size, as well as summary statistics of
the strongly and weakly connected components of the (un)directed k-NN graphs for dif-
ferent values of k ∈ {3, 5, 7, n1/3, 2 · n1/3, 0.5 · n1/2, n1/2}, which hence are either constant
or a function of the number of nodes n.

The mean time of computing this set of features was 0.255 seconds per instance,
with the median at 0.24 seconds and a standard deviation of 0.41 seconds.

UBC ∪ TSPmeta ∪ Pihera. The union of UBC, TSPmeta, and Pihera (405 features). Note
that, because of overlaps in the three constituent sets, this large set contains some re-
dundant features.

3.3 TSP Instances

Consistent with other work in this area, we use instances from multiple TSP benchmarks
and generators. The optimal tour length for each of the instances we used was obtained
using Concorde (Applegate et al., 2007).8 Note that we limited our study to instances
for which the optimal tour length can be obtained within reasonable time in this way or
has been published previously. This permitted us to determine with certainty whether
the solvers we studied found an optimal solution9 and how long they had to be run
to achieve this. This is the most ambitious goal for any TSP solver, and even though
inexact solvers, such as the ones we consider here, cannot prove optimality, they are
typically able to find solutions whose optimality is later proven using exact methods,
and knowledge of optimal or near-optimal solutions is known to greatly facilitate this
process. We note that the time required for finding optimal solutions has been routinely
studied in the literature (see, e.g., Hutter et al., 2014 and Dubois-Lacoste et al., 2015).
Even for an inexact TSP solver, this is a useful performance measure, since in many
applications, improvements in solution quality can be exploited swiftly and with low
cost.

In the following, we give a brief overview of the types of TSP instances we used,
while details of the benchmark set will be discussed later, in Section 4.

RUE Instances. The widely studied random uniform Euclidean (RUE) instances are ob-
tained by placing n points uniformly at random in a square, with integer coordinates
between 1 and 1 000 000, where each point corresponds to a city to be visited. Dis-
tances between these cities are defined as Euclidean distances between the respective

8http://www.math.uwaterloo.ca/tsp/concorde.html
9There may be multiple tours with the same optimal tour length.
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points, rounded to the nearest integer. The RUE instances used in our experiments
were generated using the portgen generator from the 8th DIMACS Implementation
Challenge.

TSPLIB Instances. TSPLIB is a widely-used collection of TSP instances with different
characteristics, including instances from various applications of the TSP. In our experi-
ments, we used instances with edge weight types EUC 2D, CEIL 2D, and ATT.

National Instances. The national instances are one of two sets of instances we obtained
from the TSP webpage10 and are based on the real-world locations of cities in different
countries.

VLSI Instances. The VLSI instances are the second set of instances from the TSP
webpage10 and originate from an application in VLSI circuit design. These instances
are known to be particularly hard for many TSP solvers, including Concorde and
EAX.

An example instance for each of the aforementioned four benchmark sets is de-
picted in Figure 1. While instances from these four sets were already used in our initial
work on algorithm selection for the TSP (Kotthoff et al., 2015), clustered instances were
not considered then. These types of instances play an important role in many TSP ap-
plications (e.g., vehicle routing), and we added two sets of clustered TSP instances to
our overall benchmark.

Netgen Instances. This set of clustered instances, generated using the function
generateClusteredNetwork from the R-package netgen (Bossek, 2015), consists of mul-
tiple instances for each combination of the number of cities n ∈ {500, 1 000, 1 500, 2 000}
and clusters nc ∈ {2, 5, 10}.

The instance generation process was introduced in Meisel et al. (2015) and works as
follows: First a maximin Latin hypercube sample (LHS, McKay et al., 1979) of size nc is
generated in two dimensions, that is, nc points are placed in the two-dimensional space
maximising the minimal distance between design points. The space-filling property of
LHS designs ensures that the cluster centres are evenly distributed across the space.
Next, random points are sampled from a multivariate normal distribution per cluster
using the cluster centres as the mean value vector and the distance to the nearest cluster
centre as the variance in each dimension. The number of points is equally distributed
across the clusters. Figure 2 shows two examples of such instances: one with nc = 2 and
n = 50 (left) and one with nc = 5 and n = 250 (right).

Morphed Instances. In addition, we created morphed instances, which combine prop-
erties of RUE and clustered netgen instances, by using the morphing algorithm intro-
duced by Mersmann et al. (2012) and improved by Meisel et al. (2015). It combines two
instances with the same number of cities n using the following two-phase approach.

First, corresponding points in the two instances are matched by minimising the
sum of Euclidean distances between matched points across all points through a linear
programming formulation. Second, a convex combination zij = α · xij + (1 − α) · yij of
the node coordinates of paired points xij and yij , where i = 1, . . . , n and j = 1, 2, de-
termines the node coordinates in the corresponding morphed instance zij for a given
morphing coefficient α ∈ [0, 1]. Extreme values of α ∈ {0, 1} result in one of the input

10http://www.math.uwaterloo.ca/tsp/index.html
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Figure 1: Examples of TSP benchmark instances: 1000-2 (RUE; top left), d1291 (drilling
problem; TSPLIB; top right), lu980 (980 cities in Luxembourg; National; bottom left),
and pbd984 (VLSI; bottom right).

instances, while other values of α generate intermediate instances, as illustrated in
Figure 3.

The morphed instances used in our experiments were generated by applying the
function morphInstances, available in the R package netgen, with morphing factor α =
0.5 to randomly selected instance pairs from the netgen and RUE sets.

For comparability and reproducibility of our experiments, we published the coordi-
nates, distances as well as the respective optimal solutions (as found by Concorde) of the
artificially generated TSP problems—that is, the RUE, netgen, and morphed instances—
online at https://tspalgsel.github.io/, where we also provide some additional infor-
mation on our work. Moreover, all measured solver performances as well as the
corresponding feature values, are provided publicly available in the Algorithm Selection
Library (ASlib, Bischl, Kerschke et al., 2016) at http://www.coseal.net/aslib/.
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Figure 2: Examples of netgen TSP instances with parameters nc = 2 and n = 50 (left),
and nc = 5 and n = 250 (right) on a [0, 100] × [0, 100] grid. The white points indicate the
locations of the nc cluster centers (determined by means of maximin Latin hypercube
sampling), and the black points indicate the actual cities to be visited.

Figure 3: Example of instance morphing of a 2-cluster instance into a RUE instance with
n = 100 nodes. A sequence of increasing morphing coefficients α ∈ {0, 0.25, 0.5, 0.75, 1}
illustrates the transition between both instances.

3.4 Supervised Learning Methods for Algorithm Selection

A key aspect of this work is finding a suitable—that is, high-performance—algorithm
selection model. We evaluated three supervised learning strategies, namely classifica-
tion, regression, and paired regression, with multiple machine learning techniques for each.

In the classification approach, we label each instance with the best-performing TSP
solver. In the regression approach, we predict the runtime for each solver on an instance
separately and choose the solver with the lowest predicted runtime. The pairwise re-
gression approach predicts the performance difference between two solvers for each
pair of solvers. The solver with the best predicted performance difference to all other
solvers is chosen. Further details regarding the setup and implementation of the three
strategies can be found in Section 5.1.

The algorithm selectors themselves were built using the R-package mlr (Bischl,
Lang et al., 2016). Using this machine learning toolbox, we trained recursive partition-
ing and regression trees (rpart, Therneau et al., 2015), random forests (randomForest,
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Liaw and Wiener, 2002), and kernel-based support vector machines (ksvm, Karatzoglou
et al., 2004) for each strategy. In addition, multivariate adaptive regression splines (mars,
Leisch et al., 2016) were trained for the two regression approaches. Further details on
MARS models can be found within Friedman (1991) or in the Appendix.

Each of the methods was used with its default settings, that is, without additional
hyperparameter optimisation. Specifically, the random forests were built with 500 trees,
using a uniform random sample of �√p� (classification) or max{�p/3�, 1} (regression /
paired regression) of the p features for each data set as candidates for each split point.
The support vector machines used a Gaussian kernel with an a priori estimate of the
inverse kernel width parameter, sigma, obtained using the sigest function from the
R-package kernlab (Karatzoglou et al., 2004).

After training our algorithm selection systems based on these models, we assess
their performance on a given TSP instance by determining the running time of the solver
selected on that instance plus the running time required for computing the instance
features used by the selector. To get reliable generalisation performance estimates on a
given training set of instances, we use 10-fold cross-validation (further details will be
given in Section 5).

3.5 Assessing the Significance of Performance Differences

In general, when comparing two TSP solvers, S1 and S2 (one or both of which may be
algorithm selectors) on the same instance set I , we want to assess whether any observed
difference in performance can be considered statistically significant. Here, performance
is measured via the widely used PAR10 score (see, e.g., Bischl, Kerschke et al., 2016),
which averages running time over I , counting runs that exceed the given cutoff time as
ten times the cutoff. Our analysis addresses the question to which extent an observed
difference in PAR10 scores depends on the particular given instance set, I . We therefore
used bootstrap sampling to simulate drawing new instance sets from the distribution of
problem instances that gave rise to I (Fawcett et al., 2017); following common practice,
each sample was constructed using uniform random sampling with replacement and
contains the same number of instances as I (Hastie et al., 2009). For each of the B =
10 000 bootstrap samples I1, . . . , IB thus obtained, we computed the PAR10 scores for
S1 and S2.

As a first measure of statistical stability, we determined the fraction of samples in
which S1 has a better (i.e., lower) PAR10 score than S2. The higher this fraction, the more
confident we can be that a performance advantage of S1 over S2 observed on benchmark
set I also holds for similar sets I ′ (where technically, similarity means that both sets stem
from the same underlying instance distribution).

To sharpen this analysis, we assessed the statistical significance of the performance
difference between S1 and S2 on I by performing a one-sided Wilcoxon signed-rank
test on the pairs of performance data (PAR10(S1, Ib ), PAR10(S2, Ib )) for b = 1, . . . , B

setting the null hypothesis to the “≥” relation comparing S1 and S2. This standard non-
parametric test for paired samples was chosen in order to avoid unrealistic assumptions
regarding the nature of the distribution of the performance data (Hollander et al., 2013).
We note that performing the same test on the pairs of performance values on individ-
ual instances i ∈ I would be inappropriate, since we are interested in the difference in
aggregate performance on the entire set I , rather than the performance difference on in-
dividual instances. To see why this could give misleading results, imagine an extreme
case in which on a large fraction of instances in I (say: 90%) S1 runs marginally slower
than S2 (say: 0.1% slower), while on the remaining instances, S1 is dramatically faster
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Table 1: Overview of the sizes and numbers of instances which were solved by at least
one of the five algorithms and consist of 500 to 2 000 cities—per TSP set and in total.
The problems are summarised by the minimum, first quartile (= 25%-quantile), median,
arithmetic mean, third quartile (=75%-quantile), and maximum.

Number of Cities

TSP set Min. 1st Qu. Median Mean 3rd Qu. Max. Number of Instances

RUE 500.00 875.00 1 250.00 1 250.00 1 625.00 2 000.00 600 (32.5%)
VLSI 662.00 968.25 1 412.50 1 310.61 1 595.00 1 973.00 18 (1.0%)
TSPLIB 532.00 738.75 1 232.00 1 165.14 1 424.00 1 889.00 22 (1.2%)
National 734.00 929.00 980.00 1 248.60 1 621.00 1 979.00 5 (0.3%)
Netgen 500.00 875.00 1 250.00 1 250.00 1 625.00 2 000.00 600 (32.5%)
Morphed 500.00 875.00 1 250.00 1 250.00 1 625.00 2 000.00 600 (32.5%)

Total 500.00 813.00 1 304.00 1 249.58 1 583.00 2 000.00 1 845 (100.0%)

than S2 (say: 1 000 times). In this case, S1 would be much better than S2 according to
PAR10 score and preferred in most practical situations, while the Wilcoxon signed-rank
test on I (rather than bootstrap samples of I ) would indicate that S1 performs signifi-
cantly worse than S2, because used in this way, the test essentially ignores the magnitude
of performance differences on the instances i ∈ I .

For the analysis of our experimental results described in Section 6, we used R to gen-
erate bootstrap samples and to carry out the Wilcoxon signed-rank test with a standard
correction for ties (R Core Team, 2016).

4 Generating the Benchmark

First, we created a benchmark set of TSP instances based on the various instance sets
introduced in Section 3.3. Using each of the instance generators, we produced an equal
number of instances. In particular, for each of the instance sizes we considered, n ∈
{500, 1 000, 1 500, 2 000}, we generated 150 RUE instances, 50 netgen instances each for
nc ∈ {2, 5, 10} clusters, and 150 morphed instances obtained by combining those RUE
and netgen instances with a morphing factor of α = 0.5. Thus, we obtained a grand
total of 600 instances (4 × 150) each in our RUE, netgen and morphed sets. While the
(mostly) real-world instances in the TSPLIB, National and VLSI sets have between 48
and 11 849 cities, to achieve better balance of instance sizes across our entire benchmark,
we included only instances with 500 to 2 000 cities, resulting in 22 TSPLIB, 18 VLSI and
5 National instances, as shown in Table 1.

We note that our overall benchmark set is heavily biased towards the artificially
generated RUE, netgen, and morphed instances, because we considered it important
for the training of the machine learning models used in our algorithm selectors to have
at our disposal a large set of TSP instances. We also note that the clustered and morphed
instances, which jointly account for more than half of the overall set, show structure that
is quite typical for many real-world TSP instances and known to be challenging for TSP
solvers (see, e.g., Christofides, 1976; Solomon, 1987).

Since all five solvers we considered (EAX, EAX+restart, LKH, LKH+restart, and
MAOS) are randomised, we assessed their performance based on ten independent runs
(each with a different pseudo-random number seed) on each of the 1 845 instances from
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our benchmark set. As explained previously, each run was terminated as soon as an op-
timal solution was found or after a cutoff time of 3 600 seconds; in the first case, the
run was considered successful and in the second case, unsuccessful. We then recorded
the median running time over these ten runs; if at least six of the ten runs were suc-
cessful, the performance on that instance thus corresponds to the arithmetic mean of
the fifth- and sixth-lowest running time. When fewer than six runs were successful, the
performance on that instance was recorded as ten times the cutoff time, that is, 10 hours;
this is the widely used PAR10 score (penalised average running time with penalisation
factor 10).

Since the Pihera feature computation code is unable to handle instances with ATT
edge weight type, we had to exclude the one instance in our set, att532 from TSPLIB,
in all experiments that included those edge weights.11 However, as the performance
gap between the best (LKH) and worst (MAOS) solver on that instance is only 3.995
seconds, and we have 1 845 instances in total, the impact of att532 on the PAR10 score
of any solver or selector cannot exceed 3.995/1 845 ≈ 0.002 seconds.

Analysis of the feature values revealed that six of the Pihera features (nn3.Mdeg,
nn3.mindeg, nn3.sc.min, nn3.avg, nn5.avg, and nn7.avg), as well as the features
mst_depth_min (TSPmeta) and bc_no1s_q50 (UBC all) were constant across all 1 845
instances. As constant features do not provide any information to the machine learn-
ing algorithms used for algorithm selection, these eight features were discarded. We
also detected that two further Pihera features, nn5.Mdeg and nn3.q3deg, were constant
across 1 844 of our 1 845 instances. As explained in detail in Section 5, we evaluated
our algorithm selectors using cross-validation (CV); we therefore discarded these two
features as well, in order to avoid constant features within the training data of a single
CV-fold. The detailed procedure for preprocessing the data is shown in Algorithm 1.

Note that we performed feature computation and solver runs on the same ma-
chine, since we later take both into account to assess the performance of our algorithm
selectors.

5 Experimental Setup

We trained the machine learning methods outlined in Section 3.4 to obtain algorithm se-
lectors. With the exception of the scenarios in which we considered the Pihera features—
and therefore had to discard TSPLIB instance att532 (as explained in the previous
section)—all selectors were trained on the same set of 1 845 TSP instances, using the
aggregated running times of the five TSP solvers that were introduced in Section 3.1,
namely EAX, EAX+restart, LKH, LKH+restart, and MAOS. Following common prac-
tice in machine learning, each selector was evaluated using 10-fold cross-validation.

Our selectors were either trained on one of the four feature sets from Section 3.2 or
on the union of all four feature sets. Considering the high computational cost of these
experiments and limitations of our computing resources, we did not explicitly consider
combinations of two or three feature sets on top. However, as we performed feature
selection based on the union of all feature sets (see Section 5.2), we implicitly also cover
feature combinations that could stem from any combination of two or three feature sets.

In the context of each of the selector construction approaches outlined in Section 3.4,
we considered several machine learning procedures: classification and regression trees,

11We decided not to exclude the instance from our overall benchmark set, as it is one of the most
prominent TSPLIB instances.
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support vector machines, and two variants of random forests.12 In addition, we also
considered MARS models (see Section 3.4) in the two regression-based approaches, re-
sulting in a total of 70 possible selectors (= 5 feature sets × (4 classification + 5 regression
+ 5 paired regression machine learning procedures)).

5.1 Supervised Learning Strategies

Each of the three supervised learning strategies described below ultimately selects a TSP
solver to use for each instance. Each of the selectors thus obtained is based on a specific
feature set and consequently incurs a specific cost for determining the feature values for
any given instance. These feature costs, as well as the running time of the selected TSP
solver will then be averaged across all instances of the corresponding cross-validation
fold, resulting in a PAR10 score per fold. These ten PAR10 scores are then again averaged
across all ten folds, resulting in the algorithm selector’s PAR10 score.

Classification. The first strategy trains a machine learning model that predicts the best
TSP solver for a given instance. The decision of whether a solver performed best on an
instance is based on the aggregated running times. However, for 30 out of 1 845 instances
(i.e., about 1.6% of our benchmark set), there was no clear best solver, that is, two or more

12While the trees, support vector machines, and MARS models are deterministic, the random forests
were trained twice per model configuration to account for stochasticity.
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solvers shared the lowest runtime. For those instances, we used the arithmetic mean of
the unaggregated running times (for that instance) as a tie-breaking criterion.

Regression. While the classification approach does not consider the magnitude of the
differences in running time, but solely relies on the best-performing solver on an in-
stance, the regression approach directly models the running times of the solvers. This
approach trains five models (one per solver) and afterwards selects the solver with the
lowest predicted running time on the given TSP instance.

Paired Regression. The third approach models the differences in running time between
pairs of solvers. That is, for each pair of solvers, we model the differences in running
time, resulting in a total of ten models. We sum the running time differences per solver
and choose the solver with the best total difference in running time. We note that this
corresponds to a weighted voting scheme over pairs of solvers.

5.2 Feature Selection

We performed feature selection on each of the 70 algorithm selectors (i.e., on the un-
derlying machine learning models) mentioned previously, using three different feature
selection approaches, resulting in a total of 210 additional algorithm selectors. We used
10-fold cross-validation to assess the performance of our models, based on PAR10 scores
(including the feature computation times). The computation of many features within
each of the sets from Section 3.2 is deeply intertwined; therefore, if one or more fea-
tures from a given set are selected, the associated feature computation time is always
the same as for the entire set. During feature selection, ties between selectors with equal
performance were broken uniformly at random.

Greedy Forward-Backward Selection. Our first feature selection approach, sffs (se-
quential floating forward search), is a greedy forward-backward selection that starts
with an empty set of features (Pudil et al., 1994); in our experiments, we used the vari-
ant implemented in the R-package mlr (Bischl, Lang et al., 2016). In each iteration, this
procedure extends the given set F by the single feature not yet in F that gives the
largest improvement in selector performance. After a feature has been added, the fea-
ture whose exclusion leads to the largest improvement in performance is dropped and
the next iteration begins, that is, a further feature is added. The process terminates when
neither adding nor dropping any single feature leads to any improvement in selector
performance.

Greedy Backward-Forward Selection. The second feature selection approach, sfbs (se-
quential floating backward search, Pudil et al., 1994), works analogously to sffs, but in
reverse. We used the variant implemented in mlr (Bischl, Lang et al., 2016), which works
as follows: Starting with the full feature set, in each iteration, first the feature whose re-
moval causes the largest improvement in performance is removed from the given set
F , and then the feature, which is not yet in F , but leads to the largest improvement in
performance over F , is added and the next iteration begins.

Genetic Algorithm. In addition to the first two feature selection approaches, we also
considered a (10 + 5) genetic algorithm (Eiben and Smith, 2015). Specifically, we gener-
ate ten individuals based on a set of randomly chosen features from the provided feature
set(s), where an individual is a bit-string of selected / non-selected features, which are
used for training the algorithm selector. These ten individuals form our initial popula-
tion. Then, for each iteration (also called generation) of this feature selection strategy,
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these so-called parents from the current population are used to create five new feature
sets, the so-called offspring, using a mutation rate of 5% and crossover probability of
50%. Out of the resulting 15 feature sets—ten parents and five offspring—the ten best
are chosen as the starting population for the next generation of the evolutionary process.
We performed 100 generations of this genetic algorithm and chose the best individual
from the final population as the feature set for our final selector.

5.3 Baseline Algorithms

As done in previous work on algorithm selection, we assess our selectors against two
baselines: the virtual best solver and the single best solver, to assess the performance of our
algorithm selectors (Bischl, Kerschke et al., 2016).

Virtual Best Solver (VBS). This baseline, often also called oracle or perfect selector, pro-
vides the best possible performance on the given data by always choosing the best solver
at no cost in addition to that incurred by running the selected solver. This idealised
procedure provides an upper bound for the performance of any algorithm selector; be-
cause of imperfect selection and feature computation cost, the performance of actual
algorithm selectors usually falls short of that of the VBS.

Single-Best Solver (SBS). Our second baseline is given by the single solver available to
any selector that shows the best aggregate performance on the given set of benchmark
instances (here: the lowest PAR10 value). An algorithm selector is only useful if, taking
feature costs into account, it performs better than the SBS. In principle, we could de-
termine the SBS on our entire instance set or, for cross-validation, compute the SBS for
each fold. On our data, this results in the same SBS.

6 Results

We now present a detailed performance analysis of the algorithm selectors we automat-
ically constructed in our experiments.

6.1 Exploratory Data Analysis

We begin our analysis with some general observations on the feature values and per-
formance data observed on our benchmark set. Table 2 shows how often a solver
performed best on an instance from a specific instance set and also indicates whether
multiple algorithms achieved the same best performance. More precisely, we distin-
guish whether a solver was the only algorithm that performed best on a specific instance
(denoted as unique in Table 2) or whether multiple solvers achieved the same best per-
formance (indicated as shared). In addition, the table shows how often a solver did not
find a tour of optimal length within the given budget (denoted as failed). For 75% of the
RUE instances, one of the two LKH-versions was best (223 × unique + 226 × shared best
performance across all 600 RUE instances), and on more than 60% (753 out of 1 200) of
the netgen and morphed instances either EAX or EAX+restart showed the best perfor-
mance. Also, while EAX and EAX+restart, as well as LKH and LKH+restart, sometimes
share the best performance, MAOS was either the unique best solver or fell short of the
best performance; that is, it never jointly ranked first with another solver. Noticeably,
MAOS is usually outperformed by EAX+restart, LKH and LKH+restart; nevertheless,
there exists a small fraction of instances (70 out of 1 845) in which it performed better
than any of the other TSP solvers.
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Table 2: Solver performance in terms of the number of instances that were solved best
(relative to all other solvers); we additionally indicate for how many instances a given
solver was the only one to achieve the best performance (unique), was tied with other
solver for best performance (shared), or failed to find an optimal solution (failed), as well
as running times (PAR10 scores, in seconds). The performances of our best two selec-
tors are also shown, and the performance of the SBS (= EAX+restart) is printed in bold.
The PAR10 scores of the selectors are shown including and excluding the cost of feature
computation (top and bottom values, respectively). The PAR10 scores in the last col-
umn (marked with ∗) are those for the VBS. Note that all PAR10 scores within this table
are computed without cross-validation, i.e., they are simply averaged across all the in-
stances of the corresponding TSP set(s). Consequently, the performance values slightly
differ from the values obtained from 10-fold CV shown in Table 3. Detailed interpreta-
tions of the results shown below are given in Section 6.1.

Instance EAX LKH Best Selectors
set Measure EAX +rest. LKH +rest. MAOS #1 #2 Total

Unique 52 66 223 226 22 92 84 589
Shared 1 1 10 10 0 3 4 11

RUE Failed 157 0 18 2 106 0 0 204

20.65 21.10 10.70∗
PAR10 9 430.92 21.21 1 135.67 159.79 6 377.80

20.42 20.87

Unique 3 5 4 6 0 4 6 18
Shared 0 0 0 0 0 0 0 0

VLSI Failed 2 0 2 0 2 0 0 4

5.36 6.51 4.44∗
PAR10 4 004.18 6.35 4 008.29 47.23 4 011.35

5.14 6.29

Unique 8 2 5 6 1 8 5 22
Shared 0 0 0 0 0 0 0 0

TSPLIB Failed 5 1 2 1 2 0 0 6

13.68 15.34 10.76∗
PAR10 8 185.08 1 649.51 3 332.99 1 679.79 3 282.30

13.46 15.12

Unique 3 0 1 1 0 1 0 5
Shared 0 0 0 0 0 0 0 0

National Failed 0 0 0 0 1 0 0 1

5.25 5.34 4.12∗
PAR10 4.92 5.14 29.03 16.53 7 209.53

5.05 5.14

Unique 156 216 92 108 20 216 216 592
Shared 7 7 1 1 0 7 7 8

Netgen Failed 77 0 18 13 92 0 0 149

13.22 13.22 10.28∗
PAR10 4 627.24 12.99 1 190.55 862.97 5 532.35

12.99 12.99

Unique 152 229 94 87 27 228 231 589
Shared 8 7 3 4 0 8 7 11

Morphed Failed 114 0 22 9 93 0 0 178

16.93 16.94 11.43∗
PAR10 6 846.10 16.72 1 444.99 654.08 5 593.25

16.70 16.71

Unique 374 518 419 434 70 549 542 1 815
Shared 16 15 14 15 0 18 18 30

Total Failed 355 1 62 25 296 0 0 542

16.75 16.93 10.73∗
PAR10 6 934.81 36.30 1 305.34 565.85 5 789.98

16.52 16.70
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Figure 4: Scatterplots of the aggregated running times, shown on a log-scale, across our
1 845 benchmark instances. Left: Comparison of the virtual best solver (VBS) and the
single best solver (SBS), that is, EAX+restart. Right: Comparison of the two best per-
forming algorithms, LKH+restart and EAX+restart. While there is only one instance
(d657 from TSPLIB, shown as a small dark square in the top left) that could not be
solved by the SBS, LKH+restart failed to find the optimal tour for 25 instances (squares
on the right margin of the plot).

A closer look at the running times required by each solver across our instance sets
for finding optimal solutions reveals that, while LKH and LKH+restart clearly per-
formed best on the largest number of RUE instances, their mean PAR10 scores (1 135.67 s
and 159.79 s) are substantially worse than those of EAX+restart (21.21 s). The reason for
this lies in the fact that LKH and LKH+restart often find an optimal tour quickly, but
when they fail to do so, they take quite long, while EAX+restart shows much less ex-
treme performance variation across different instances from the same benchmark set.

Table 2 also clearly indicates that the restart mechanisms integrated into EAX+
restart and LKH+restart achieve very substantial performance improvements com-
pared to plain EAX and LKH. Interestingly, EAX benefits much more from restarting
than LKH, as plain EAX shows the highest number of unsolved instances (355) and the
worst PAR10 score of any of the solvers, whereas EAX+restart is the single best solver
and fails to solve only a single instance across all of our benchmark sets. (We note that
neither the benchmark sets nor the cutoff time were specifically chosen to achieve this
level of performance.)

For LKH+restart, especially the clustered netgen and morphed instances turned
out to be difficult to solve. On these instance sets, either variant of EAX ranked
first more often than LKH+restart, and while EAX+restart always found an optimal
tour within the given time budget, LKH+restart failed to solve 22 out of the 1200
instances.

Figure 4 (left) provides a more detailed look at the performance of our two baselines
for algorithm selection—the virtual best solver (VBS) and the single best solver, that is,
EAX+restart. As can be seen from this scatterplot, there is a substantial performance
gap between the VBS and the SBS across all instance types and sizes, clearly indicating
the performance gains that might be achieved using algorithm selection. (Recall that the
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Figure 5: Visualisation of two noteworthy TSPLIB instances. Left: d657, which was nei-
ther solved by EAX, EAX+restart nor MAOS, whereas LKH and LKH+restart managed
to find the optimal tour in less than a second. Right: p654, which was the only instance
that EAX+restart solved in less than a second (0.76 s), while LKH (1.76 s), LKH+restart
(2.47 s), and MAOS (4.41 s) needed much longer.

performance of the VBS provides an upper bound on the performance of any algorithm
selector.)

Further evidence for this performance potential comes from the fact that the SBS
needs more than one second for all but one instance (p654 from TSPLIB, which is shown
on the right of Figure 5), whereas the VBS finds an optimal tour in less than a second
for 245 instances.

As can be seen in Figure 4 (right), LKH+restart and EAX+restart show qualitatively
different performance characteristics: the running time of EAX+restart varies much less
over instances of the same size. This is also reflected in the fact that the Spearman cor-
relation coefficient between instance size and running time for LKH+restart is much
lower (0.70) than for EAX+restart (0.91).

Instance d657 from TSPLIB could not be solved by the SBS. Analyzing the perfor-
mances of all five solvers on that instance, we found that neither EAX, nor EAX+restart
or MAOS were able to solve this instance, whereas LKH and LKH+restart succeeded
in less than one second. The instance is shown in Figure 5 (left); it resembles an RUE in-
stance within the [1 000, 4 000] × [1 000, 3 000] box, with one additional city in the origin,
(0, 0). Interestingly, multiple runs of both EAX versions and of MAOS on the original
instance failed, while all five solvers quickly succeeded on a customised replicate of
that instance, which was created by sampling 656 cities random uniformly within the
previously mentioned box-constraints extended by a city located in (0, 0).

On the right side of Figure 5, we show the easiest instance for EAX+restart, p654
from TSPLIB. While it took EAX and EAX+restart between 0.75 and 0.76 s to find an
optimal tour for this instance, the other three solvers needed 2.3 to 5.8 times longer.
Comparing these instances with d657, as well as the performances of the solvers across
our instance sets, there is a clear tendency for EAX+restart to be more effective on struc-
tured or clustered data than LKH (with and without restart strategy) or MAOS.
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Table 3: Overview of the configuration, performance, and number of selected features
(per feature set) of the five best performing algorithm selectors. All five selectors per-
formed significantly better (p-value < 10−16 in a Wilcoxon signed-rank test) than the
single best solver (SBS), i.e., EAX+restart, whose PAR10 score was between 36.249 s
(without att532) and 36.362 s (with att532). The table also lists how frequently each of
the selectors performed better than the SBS, based on a comparison of 10 000 bootstrap
samples.

Selector Characteristics Performance # Selected Features

Initial FS- PAR10 Boot. UBC TSP-
Method Learner Feat. Set Strat. (in s) (in %) cheap all meta Pihera

Classif. SVM Pihera sffs 16.747 87.60 0 0 0 16
Classif. SVM All sffs 16.930 65.34 0 0 0 11
Regpairs SVM UBC (cheap) sfbs 17.712 76.57 13 0 0 0
Regr. MARS UBC (cheap) sffs 19.670 64.34 9 0 0 0
Classif. RPART Pihera sffs 20.799 63.88 0 0 0 5

6.2 Comparison of Algorithm Selectors

Table 3 summarises the performance that was achieved by the best five algorithm se-
lectors (according to their PAR10 scores) that we obtained from the experiment out-
lined in Section 5. All of them perform significantly better than the single best solver
(i.e., EAX+restart, with a PAR10 score of 36.3 s), closing most of the gap to the virtual
best solver (with a PAR10 score of 10.7 s). We also note that only a small fraction of
the available features are used by the best selectors, and that the feature selection step
is crucial for obtaining high-performance selectors; none of the 70 selectors that used
all features was able to beat the SBS. The best-performing selectors from Table 3 were
more than 10 times better (in terms of PAR10) than the same selectors constructed with-
out feature selection.

Our two best selectors are SVMs, which handle the algorithm selection problem as
a classification problem. These two selectors are based on 16 and 11 Pihera features,
respectively, but only three of the features are identical across both selectors. Other ap-
proaches, for example, a regression-based MARS model, a paired-regression SVM, or a
classification tree, also exceed the performance of the single best solver.

Noticeably, features from the TSPmeta and the full UBC feature sets—which on av-
erage needed 9 to 12 s longer to compute (per instance) than features from the other
two sets—were never selected by the best-performing selectors. Instead, these are ei-
ther based on the cheap UBC or the Pihera feature set, but none of them uses features
from both sets simultaneously, although the feature selection step in the construction
of the second-best selector began with the union of all our feature sets. Overall, our
results suggest that all feature sets are similarly informative, and if features from one
of those sets are present, adding features from any of the other sets does not improve
performance sufficiently to justify the increased cost.

Summarising the 16 and 11 Pihera features selected for inclusion in the two best-
performing models, we can conclude that the information derived from the k-NN
graphs, as well as features based on the angles between the nearest neighbors were
most important for training high-performance algorithm selectors.
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Figure 6: Scatterplots of the running times, shown on a log-scale, across 1 844 benchmark
problems (att532 was excluded). Comparison of the the single best solver (SBS), that
is, EAX+restart, and the best (left), second-best (middle), and third-best selector (right),
respectively.

Comparing the PAR10 scores of our selectors and the individual TSP solvers we
considered, our two best selectors always perform at least as well as any of the indi-
vidual solvers (including the SBS) when ignoring the costs for the feature computation.
The single best solver was only able to reach the performance of the best selector on the
netgen instances, and the performance of the second-best selector on the netgen and
National sets. For all other instance sets, our best two best selectors perform better than
the SBS. When taking feature costs into account, our best selector beats the SBS on three
of our six instance sets, and the second-best selector still beats the SBS on two instance
sets.

We note that the SBS, EAX+restart, times out on TSPLIB instance d657. By choosing
a different solver on that instance, all of our selectors avoid a substantial performance
penalty amounting to almost 20 on the PAR10 score on the entire benchmark set. LKH
and LKH+restart solve this instance in less than a second. As a result, while the PAR10
score for EAX+restart across the instances from TSPLIB was 1 649.51 s, our best selector
achieved a score of 13.68 s.

Nevertheless, even when excluding this instance from the training set, our two best-
performing selectors still performed statistically significantly better than the SBS: The
PAR10 score of the SBS is 16.8 s, while the retrained versions of the top two selectors
from Table 3 achieved PAR10 scores of 16.7 s and 16.4 s, respectively (including feature
computation costs); these differences are small, but statistically significant according to
a Wilcoxon signed-rank test at α = 0.05.

Figure 6 illustrates the behaviour of our best three selectors in more detail. The
instance at the top left is d657 and all of our models correctly avoid selecting the SBS,
EAX+restart, on this instance. For most instances however, the single best solver is the
best choice; most points are very close to the diagonal, indicating that the selectors chose
EAX+restart and that the costs for feature computation were negligible. The clouds of
points on the upper left side of the diagonal show that especially the two best models
improved over the SBS on many other instances as well.

7 Conclusion

We presented an in-depth study of automatic algorithm selection for the TSP. Specif-
ically, we demonstrated that state-of-the-art inexact TSP solvers show substantial
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performance complementarity—different solvers perform best on different TSP
instances—and that this performance complementarity can be exploited by construct-
ing per-instance algorithm selectors.

Our study presented here expands our own preliminary work (Kotthoff et al.,
2015) substantially in scope and depth. Specifically, we considered an additional solver
(MAOS), two additional types of TSP instances (netgen and morphed) and an addi-
tional feature set (by Pihera and Musliu, 2014). More importantly, for the first time,
we made extensive use of feature selection, which led to substantial performance im-
provements in the selectors we were able to construct, as demonstrated using rigor-
ous statistical tests. In addition to producing better TSP solver selectors, and hence an
improvement in the state of the art in inexact TSP solving, we have also provided, for the
first time, a detailed performance analysis of the best-performing inexact TSP solvers
known previously.

In our exploratory data analysis, we confirmed that the restart mechanisms intro-
duced by Dubois-Lacoste et al. (2015) substantially improve the performances of EAX
and LKH. While EAX without the restart mechanism showed on average the worst per-
formance of the five solvers we considered, EAX+restart was the single best solver. Nev-
ertheless, performance also strongly depends on the TSP instances: although overall,
EAX+restart showed the strongest performance on average, other solvers were found
to perform better on many instances from our benchmark sets.

While we found multiple algorithm selectors with better performance than
EAX+restart, the best two algorithm selectors are quite similar; both use support vector
machines on a small subset of the feature set by Pihera and Musliu (2014), and each one
of them improves the single best solver by a factor of two.

There are several directions for future work which we believe may lead to even
better algorithm selectors. In our earlier work, we explored the use of so-called probing
features, which are derived from partial runs of a TSP solver (Kotthoff et al., 2015). While
we did not require such features here to produce very effective algorithm selectors,
their use might lead to further performance improvements. Likewise, hyperparameter
optimisation of the machine learning procedures at the heart of our selectors, though
costly, might prove beneficial. Finally, based on our results presented here, we believe
that a hybrid TSP solver that initially tries to find an optimal tour with a very fast solver
(such as LKH) and then switches to EAX+restart might hold significant promise.
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Appendix

While recursive partitioning and regression trees, random forests and kernel-based sup-
port vector machines are all popular machine learning approaches, multivariate adaptive
regression splines (MARS, Friedman, 1991) are less prominent. We still considered MARS,
because we observed promising performance in preliminary experiments; furthermore,
the underlying idea is simple and appealing.

A MARS model is a combination of piecewise polynomial functions, so-called
splines. More formally, the model can be written as a function

f̂ (z) = c0 +
K∑

k=1

ck · bk (z)

with model coefficients c0, . . . , cK , basis functions b1(z), . . . , bK (z) and a p-dimensional
input vector z = (z1, . . . , zp )T . The basis functions bk , for k = 1, . . . , K , stem from a set

H = {(zj − x1j )q+, (x1j − zj )q+, . . . , (zj − xNj )q+, (xNj − zj )q+}j=1,...,p

of so-called hinge functions. Each of them is a polynomial (of order q) of the difference be-
tween the j -th input variable zj and a realization of this variable from the training data,
x1j , . . . , xNj , the so-called knots. Furthermore, the hinge function limits the polynomial
to non-negative values, i.e., (zj − xij )q+ := max{0, (zj − xij )q}.
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