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Abstract

Al has advanced the state of the art in many appli-
cation domains, including ones not ordinarily asso-
ciated with computer science. We present an appli-
cation of automated parameter tuning to materials
science, in particular, we use surrogate models for
automated parameter tuning to optimize the fabri-
cation of laser-induced graphene. This process al-
lows to create microscopic conductive lines in thin
layers of insulating material, enabling the devel-
opment of next-generation nano-circuits. Optimiz-
ing the parameters that control the laser irradiation
process is crucial to creating high-quality graphene
that is suitable for this purpose. Through the ap-
plication of state-of-the-art parameter tuning tech-
niques, we are able to achieve improvements of up
to a factor of two compared to existing approaches
in the literature and to what human experts are able
to achieve. Our results are reproducible across dif-
ferent experimental specimen and the deployed ap-
plication can be used by domain scientists without
a background in Al or machine learning.

1 Introduction

Al is increasingly pervasive in everyday life and has enabled
advances that were unimaginable without it in many areas of
science. One such application domain is materials science,
where Al has enabled the discovery of new solar light ab-
sorbers [Bai et al., 2018], new metallic glasses [Ren et al.,
20181, autonomous growth of carbon nanotubes [Nikolaev et
al., 2016], and the production of Bose-Einstein condensates
[Wigley er al., 2016], to name but a few examples. At the core
of all of these successes lies the application of state-of-the-art
Al techniques to processes that have traditionally been the do-
main of human experts, who base their work on theories that
describe the underlying processes and were developed over
decades. In many such cases, we find that Al can handle com-
plex tasks better than the human experts given enough train-
ing examples, even though Al models do not usually have a
semantic understanding of the fundamental laws.

In this paper, we present a new case where Al can
help human experts to design materials — the transformation
of graphene oxide into graphene through laser irradiation.

This process creates electrically conductive areas (graphene)
within an insulating surrounding environment (graphene ox-
ide). The topical application of a laser allows precise con-
trol over where these conductive areas are created, enabling
the creation of microscopic circuits, among other things.
Graphene oxide can be deposited onto practically any surface
in very thin layers, enabling for example flexible electronics
and circuits on irregular surfaces.

Transforming graphene oxide into graphene through laser
irradiation is not a straightforward process. The experimen-
tal parameters that control the irradiation process have to be
set correctly to achieve the desired result. Such parameters
include the power of the laser, the duration it is applied to a
particular area, and the pressure in the reaction chamber. In-
correct settings may result in graphene oxide that is not suffi-
ciently transformed into graphene and therefore not conduc-
tive, or even the destruction of the material.

Manual exploration of this parameter space is tedious and
costly. Evaluating a particular parameter configuration re-
quires time, the raw graphene oxide material, specialized
equipment, and a skilled operator. There is little theory that
could guide the exploration of the parameter space — while
the underlying processes are understood in general, the high-
level physical and chemical laws that govern the reduction of
graphene oxide to graphene do not offer practical guidance
for setting parameters.

Automated parameter tuning techniques are well-
established in Al and have seen successful applications in
many areas, for example combinatorial problem solving
[Hurley et al., 2014], continuous optimization [Xu et al.,
2011], and machine learning [Feurer er al., 2015]. More
specifically, modeling challenging parameter spaces with
so-called surrogate models and using these models in
iterative model-based approaches to optimize parameter
configurations allows to explore large parameter spaces and
efficiently while minimizing expensive evaluations of the
underlying process.

We present the application of state-of-the-art Al and ma-
chine learning techniques to the production of laser-induced
graphene, improving the properties of the material by up to a
factor of two. This improvement translates directly into bet-
ter advanced materials that will enable the next generation of
advanced electronics and their cost-efficient production.



2 Background and Related Work

We first provide background on the Al techniques, in particu-
lar model-based optimization, and then present the materials
science application domain.

2.1 Automated Parameter Tuning

In this paper, we consider self-adaptive learning systems that
improve over time [Vilalta and Drissi, 2002]. In particular,
we investigate the application of techniques for automated
parameter tuning through model-based optimization. Auto-
mated parameter tuning, also called algorithm configuration,
parameter control, or hyperparameter configuration, aims to
find the best parameter configuration of an algorithm on a set
of problem instances to solve [Hoos, 2011]. The output of
an automated parameter tuning system is usually a configura-
tion, i.e. a complete parameterization of the input algorithm
that can be applied directly to solve new problem instances.
Such a configuration may include the algorithm to run, cho-
sen from a portfolio of available algorithms; i.e. a solution to
the joint optimization problem that chooses the algorithm as
well as its parameters [Kotthoff et al., 2017].

Techniques for automated parameter tuning usually pro-
ceed in an iterative fashion — they predict the configuration
to evaluate, and the result of this evaluation informs the pre-
dictions for the configuration to evaluate next. At the heart
of these techniques are so-called surrogate models, which ap-
proximate and model the process whose parameters are to be
tuned. This underlying process is expensive to evaluate, i.e.
it is infeasible to exhaustively explore the parameter space
and we are interested in keeping the number of evaluations as
small as possible. The approximate surrogate model on the
other hand is cheap to evaluate and allows for a targeted ex-
ploration of the parameter space, identifying promising con-
figurations that available resources for evaluations of the un-
derlying process should be directed towards.

This family of techniques is often referred to as model-
based optimization (MBO), as the optimization process is
based on the predictions of the surrogate models that serve
as a replacement for the underlying process. Surrogate mod-
els are induced using machine learning, taking an increasing
amount of ground-truth data into account between subsequent
iterations. State-of-the-art MBO approaches often use Gaus-
sian Processes or random forests to induce surrogate models,
depending on the nature of the parameter space. The inter-
ested reader is referred to [Jones et al., 1998] for an overview.

2.2 Laser-Induced Graphene

Graphene is a two-dimensional single layer of carbon atoms
with extraordinary properties, such as strength higher than
any other material, high conductivity, and near transparency.
To produce graphene, natural sources of carbon, e.g. graphite,
coal, and biochar, can be converted into graphene oxide inks
that can be printed directly onto substrates as thin films. Ir-
radiating this precursor material with a laser heats and an-
neals the graphene oxide selectively to reduce the oxygen,
ultimately converting it into pure graphene. This reduction
of graphene oxide into graphene allows for the rapid and
chemical-free manufacturing of advanced electronic devices

such as sensors [Luo et al., 2016], supercapacitors [Lin et
al., 2014], and solar cells [Sygletou et al., 2016], to name
but a few examples. There are industrial motivations to use
graphene oxide as the initial material for creating electron-
ically active surfaces — in contrast to graphene or graphite,
graphene oxide is soluble in water and can be easily cast onto
films using liquid-phase chemistry.

The targeted irradiation allows the reduced graphene ox-
ide to be patterned onto solid substrates without pre-patterned
masks in only a few minutes. While graphene is electrically
conductive, graphene oxide is not — patterns of graphene in an
insulating material form electric circuits. The laser irradiation
process enables the scalable and cost-efficient fabrication of
miniaturized electronic devices [El-Kady and Kaner, 2013].

Raman spectroscopy is a common technique for determin-
ing the quality of the laser-irradiated graphene oxide through
observing how laser photons scatter after they interact with
the vibrating molecules in the sample probe. The intensities
of the characteristic D and G bands in the Raman spectra can
be used to judge to what extent the graphene oxide has been
reduced to graphene, i.e. the quality of the resulting mate-
rial. The D and G bands result from the defects and in-plane
vibrations of sp? carbon atoms. In particular, the degree of
reduction of the graphene oxide, and thus the conductivity of
the irradiated area, can be quantified through the ratio of the
intensities of the D and G bands — the smaller this ratio, the
more the precursor material has been reduced.

The main factors affecting the quality of the reduced mate-
rial are the experimental parameters of the irradiation process.
A recent study emphasizes the need to optimize these param-
eters to achieve good results [Wan et al., 2019]. The authors
focus on the understanding of the sub-processes involved in
reduction process and how their interplay can be affected by
changing the laser power and the irradiation duration. Their
ultimate goal, as in this paper, is to produce graphene with
desired properties. However, they consider only a subset of
the parameters we take into account here and rely solely on
manual tuning of the values of those parameters.

An in-depth description of ways of reducing graphene ox-
ide to graphene is beyond the scope of this paper; the inter-
ested reader is referred to a recent survey on laser-induced
graphene for more background [Wang et al., 2018]. While
there have been applications of model-based optimization
in other areas of materials science (e.g. [Hise ef al., 2018;
Talapatra et al., 2018]), we present the first application to
laser-induced graphene, to the best of our knowledge.

3 Methodology and Experimental Setup

The graphene oxide samples investigated in this paper were
prepared from graphite powder. The powder was completely
oxidized in solution via Hummers’ method [Hummers and
Offeman, 1958]. After centrifugation, the oxidized residue
was freeze-dried into powder, dispersed in isopropanol, and
sonicated twice. The resulting ink supernatant was separated;
an isopropanol solution with a suspended graphene-oxide-
like material was collected for each sample. The ink super-
natant was used to deposit a thin graphene oxide film onto
quartz substrates via ultrasonic spray deposition. The prepa-



ration of a sample to be irradiated requires about one week
to produce the graphene oxide powder and 1-2 days to create
the ink and deposit it onto the substrate.

Deposited graphene oxide films were placed in a sam-
ple chamber containing Argon gas. The graphene patterns
were made using a continuous-wave diode-pumped solid-
state laser system with a wave length of 532nm. The laser
beam was focused with a 50x microscope lens to a spot size
of 20 um on the sample surface. Irradiated beam spots were
positioned 500 um apart from each other to ensure pristine
precursor material for each experiment. Each sample is ap-
proximately 1 cmx 1 cm, allowing for 361 spots. In practice,
the number of effective evaluations this allows for is lower
because of repeated experiments and inconsistencies in the
material that need to be avoided.

The quality of the laser-induced graphene spots was deter-
mined using a Raman spectrometer. As the sample is irradi-
ated, the laser beam is backscattered and filtered through a
long-pass filter to increase the sensitivity of the signal. Using
the same laser source for patterning and Raman spectroscopy
allows to characterize the identical spot. The Raman data for
each spot were averaged over 10 measurements with a col-
lection time of 3s at laser power <10 mW for each mea-
surement. The Raman spectra were post-processed with a
linear background subtraction to 0 and normalization of the
maximum peak to 1. The D and G bands were fitted using a
Lorentzian function and the ratio of their intensities computed
as the ratio of the areas under the fitted functions.

A skilled human operator can perform about 30 experi-
ments per day, including irradiating the sample with a given
parameter configuration, performing the Raman analysis, and
computing the ratio of the D and G band intensities. We are
currently working on automating this process fully to increase
experimental throughput.

To determine the reliability of our results, we performed
three replicates each for five different parameter settings and
recorded the ratio extracted from the measured Raman spec-
tra. The median standard deviation was ~ 6% — significantly
smaller than the improvements we demonstrate.

3.1 Parameter Space

We consider the following three experimental parameters that
control the irradiation process.

e The power applied to the laser used to irradiate the
sample. We considered a power range of 1mW to
4400 mW, the maximum power supported by this laser.
The power accuracy was £0.25%.

e The duration a particular spot was irradiated by the laser.
We varied this parameter from 710 ms to 20 210 ms. The
lower value is determined by the time it takes to move
the mirror used to direct the laser towards the reaction
chamber in our experimental setup.

e The pressure in the reaction chamber. The values for
this parameter ranged from 10 psi to 100 psi. Both min-
imum and maximum values are the regulatory minimum
and maximum safe pressures for our experimental setup,
which allows the pressure to be set with an accuracy of
+2 psi.

The parameters and their ranges give rise to a total of
7808200400 possible configurations. The difficulty of ex-
ploring this parameter space, apart from its size, comes from
the high cost of gathering experimental data, which is very
time-consuming and labor-intensive, much more so than for
computational applications. While humans are very good at
identifying and exploiting patterns, in this case there is sim-
ply not enough data for them to do so. Our machine learning
models, on the other hand, are able to capitalize on even small
amounts of data. This is particularly relevant here as a single
graphene oxide sample supports at most 361 evaluations and
takes a long time to prepare.

3.2 Model-Based Optimization

We use the mIrMBO package [Bischl et al., 2017] to model
the parameter space, build the surrogate models, and deter-
mine the most promising configuration for the next evalua-
tion of the underlying process. As all of our parameters are
numeric, we use Gaussian Processes as the surrogate model,
and a focused search with at most 10 iterations evaluating not
more than 10 000 points in the parameter space using the sur-
rogate model to select the most promising configuration with
respect to the expected improvement over the best configura-
tion discovered so far. All other mlrMBO parameters were
left at their default values.

We obtained training data for the initial surrogate model
by evaluating parameter settings known to perform well from
previous experiments and augmenting them with evaluations
of random parameter values within ranges known to yield
good results. The number of configurations and the cost of
evaluating them makes obtaining training data in a grid that
is not too coarse prohibitive, and hence we are unable to com-
pare to results a grid search approach would achieve.

In each iteration of the tuning process, the next configura-
tion to evaluate is predicted by mirMBO. The human operator
sets these values and performs the experiment. The resulting
D to G ratio of the irradiated spot is added to the data used to
train the surrogate model, which is retrained before predicting
the configuration to evaluate for the next iteration.

4 Results

We performed a series of three sets of experiments. The ex-
perimental setup, considered parameters, and objective were
the same, but different graphene oxide films (manufactured
using the same process) and different training data points
were used. The aim of running a series of experiments was
to show that our method works with slight variations in the
precursor material, as two thin films of graphene oxide are
not exactly the same even if they are manufactured using the
same process, and to show that we can achieve improvements
with different training data.

In the first set of experiments, we used 19 different pa-
rameter configurations to train the initial surrogate model and
performed 8 iterations of our automated parameter tuning ap-
proach. In the second set, we used 44 training data points
and 48 tuning iterations, while in the third set, there were 20
training data points and 20 tuning iterations. The total exper-
imental effort was more than a week of human operator time,
in addition to the effort of preparing the samples.
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Figure 1: Performance values (ratio of D to G intensities) for three
sets of experiments. On the left of each graph, the distribution of
ratios for the training data is shown (iteration 0). The circles show
ground-truth data, crosses values predicted by the surrogate model
(connected to the corresponding ground-truth value with a grey line).
The boxplot on the right of each graph shows the distribution of ra-
tios of the ground-truth values of the configurations that the surro-
gate model explored. In all cases, this distribution is better than the
distribution from the training data.

Figure 1 shows the performance successive tuning itera-
tions achieve. We note that performance improves signifi-
cantly as soon as we explore configurations that were pre-
dicted by the model-based parameter tuning approach. Pre-
dictions become more accurate (the distance between actual
and predicted values becomes smaller) as more experiments
are performed and the surrogate model is trained on more
data, with a few exceptions. While we achieve significant per-

formance improvements in all three sets of experiments, they
are particularly large in the first and second set, where the
distributions of ratios from the training set and the from pre-
dicted configurations barely overlap. The results in the third
set of experiments are not as good because we intentionally
included a few very good configurations from the first two
sets of experiments to get a stronger baseline. We still achieve
significant improvements over the best result in the training
data, and improve on the best configuration discovered in our
previous automated parameter tuning experiments.

The best ratio of D to G intensities we achieve is =~ 0.1,
with a base ratio of =~ 1 for the precursor material. The best
ratio our human experts were able to achieve was ~ 0.2 — in-
troducing automated parameter tuning with surrogate models
improves performance by a factor of two in a small number
of iterations with relatively little experimental effort.

Figure 2 shows what parts of the parameter space the au-
tomated tuning explores and the results achieved. The graphs
are qualitatively similar for all three sets of experiments —
while the first few iterations propose and evaluate configu-
rations that are similar to the ones in the training data with
respect to the ranges of the parameter values, the automated
tuning approach quickly moves into parts of the parameter
space that was not considered by the human experts. For ex-
ample, in the third set of experiments, while the first few it-
erations (iterations 1 through 7) remain within or close to the
range explored by the human experts, the predictions move
into an unexplored area of the space (iteration 8), only to find
that performance does not improve there, and jump into a dif-
ferent part of the space at the edge of the region explored by
humans (iteration 9). Performance improves, and the surro-
gate model spends most of the remaining iterations exploring
this part of the space. This demonstrates the power of our ap-
proach — not only do we achieve performance improvements,
we also explore parts of the parameter space that human ex-
perts did not think to explore.

The main reason for this advantage of the automated pa-
rameter tuning approach is that we consider large ranges of
values that humans tend to explore in “natural” steps. As
an example, the configuration that achieved the best perfor-
mance had a laser power of 486 mW, an irradiation duration
of 4377 ms, and a pressure of 53 psi. A human would never
think of trying these particular values, but round them instead.

Inspection of the parameter tuning results revealed that ir-
radiation time was the most important parameter, closely fol-
lowed by laser power. Pressure played only a small role.

5 Discussion

There are numerous approaches in the literature that reduce
graphene oxide to graphene. [Zhang et al., 2010] report D
to G intensity ratios of up to 0.89 for their laser-induced
graphene, while [Guan et al., 2016] achieve ratios of 0.27.
[Sokolov et al., 2013] achieve 0.29 and, with an experimental
setup that is closest to ours, [Tao et al., 2012] achieve 0.96.
Most of the results in the literature are not directly com-
parable to ours, as the experimental setup differs. Other ap-
proaches use different kinds of lasers, pattern graphene oxide
on different substrates and with different thicknesses, and use
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Figure 2: Performance values (ratio of D to G intensities) in param-
eter space, projected into a single dimension (x axis) using principal
component analysis. Circles denote training data that was used to
build the initial surrogate model, diamonds data obtained during the
parameter tuning. Black diamonds denote ground-truth data, grey
diamonds the values predicted by the surrogate model (connected to
the corresponding ground-truth value with a grey line). The numbers
denote the tuning iteration, i.e. the point labeled 1 was predicted by
the surrogate model using only the training data, point 2 was pre-
dicted from the training data and the ground truth from point 1, etc.

different gases in the reaction chamber. Furthermore, they
usually irradiate larger areas or lines. The reason we chose
to irradiate spots in this paper is that this allows us to per-
form many more experiments on a graphene oxide sample of
the same size in the same time. Given the large cost of run-
ning experiments, we preferred this approach. However, the
techniques we present here are applicable for the approaches

we reference as well. While minor modifications may be
required, for example replacing the duration for irradiating
a spot with the velocity for irradiating a line, we are confi-
dent that similar performance improvements to what we have
shown here can be achieved.

Even though our experimental setup is not directly compa-
rable to other setups in the literature, the large improvement
we have been able to achieve (almost a factor of three) gives
us confidence that we have indeed identified a new state of
the art for laser-induced graphene production.

6 Conclusions and Outlook

We have applied state-of-the-art Al techniques, in particular
surrogate-model-based optimization for automated parameter
tuning, to the real-world problem of reducing graphene oxide
to graphene through laser irradiation. By using Al to optimize
the experimental parameters, we were able to improve over
results previously reported in the literature by almost a factor
of three, and over results achieved by human experts by up to
a factor of two.

While the surrogate models we develop here achieve very
good results, our understanding of the underlying processes
is not improved. Leveraging these models for such purposes,
for example through techniques that fall under the umbrella
of explainable Al, would allow us to close the scientific loop
and have Al work in tandem with human researchers to not
only achieve better experimental results, but also to develop
new theories in future work.
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