
Ensemble classification for constraint solver
configuration

Lars Kotthoff, Ian Miguel, and Peter Nightingale
{larsko,ianm,pn}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. The automatic tuning of the parameters of algorithms and
automatic selection of algorithms has received a lot of attention recently.
One possible approach is the use of machine learning techniques to learn
classifiers which, given the characteristics of a particular problem, make
a decision as to which algorithm or what parameters to use. Little re-
search has been done into which machine learning algorithms are suitable
and the impact of picking the “right” over the “wrong” technique. This
paper investigates the differences in performance of several techniques
on different data sets. It furthermore provides evidence that by using a
meta-technique which combines several machine learning algorithms, we
can avoid the problem of having to pick the “best” one and still achieve
good performance.

1 Introduction

The automatic selection of algorithms or parameters of algorithms is a prob-
lem that has been recognised for decades [19], but systematic investigation has
only started relatively recently. Nowadays, systems that incorporate automatic
selection of algorithms provide major performance improvements [17, 22, 12].

Most of these approaches use machine learning to uncover how the attributes
of a particular problem affect the performance of a set of algorithms or a set of
parameters for one algorithm. The designers of such systems face several difficult
challenges. Which attributes are needed to capture the important effects on
performance? Is the set of training instances representative and are the results
likely to be applicable in general? Is the learned classifier overfitted?

The success or failure of such systems does not only depend on these factors,
but also on the selection of an appropriate machine learning algorithm. This
problem has received little attention so far – the choice is usually justified by
the success of the system. But has the most appropriate technique been chosen
and how likely is it that the chosen technique is also the best one in general?

We investigate this very question by applying many different machine learn-
ing techniques to two different algorithm selection problems. We propose an
ensemble classification approach, which uses many different machine learning
algorithms. We show that its performance is as good as and sometimes better
than the performance of the best individual technique and at the same time
more predictable and stable.

2 Background

The underlying problem is the algorithm selection problem, which was first de-
scribed in [19]. Given a choice of algorithms and parameter settings, we want to
choose the algorithm-parameter combination that delivers the best performance
for a specific problem. Machine learning is an established approach for solving
this problem, used for example in the Pythia [20] and Multi-Tac [16] systems.

Two successful approaches in SAT are SATzilla [22] and SATenstein [12]. In
CP, CP-Hydra uses a similar approach [17]. Multi-Tac configured aspects of
a solver based on instances. ACE [7] and Bain et al [2] learn search heuristics
from instances. Genetic algorithms have been shown to be effective as well [1].

In machine learning, the combination of several classifiers is a well-established
technique. In so-called ensemble learning [6], there are many different methods
for creating different classifiers and combining their predictions, such as boot-
strap aggregating, boosting and stacking [21].

The difference between different parameter settings for the same algorithms
can have a more profound effect than choosing a different algorithm [14]. Select-
ing the most suitable machine learning algorithm and parameters for a set of
instances is an area of active research in machine learning itself [4].

3 Algorithm selection data sets

We investigate the performance of different machine learning algorithms on two
algorithm selection problems. First, we decide whether to use g-nogood learn-
ing with lazy explanations [9] or not. Second, we consider the nine different
versions of the alldifferent constraint detailed in [10]. These problems represent
different important areas in constraint solver design. Lazy learning affects the
search procedure, while the alldifferent constraint affects strength and efficiency
of propagation. For lazy learning in particular, selecting different implementa-
tions instead of using a default one can provide a speedup of orders of magnitude.

We selected benchmark instances from Lecoutre’s XCSP repository1 and
from our own stock of problems, which includes many instances from previ-
ous CSP solver competitions. For lazy learning, we used 2028 problem instances
from 46 different problem classes. Within a time limit of 5000 seconds, both the
standard and the learning solvers were able to solve 1773 instances. For the alld-
ifferent constraint, we used 1313 different instances from 16 different problem
classes. We imposed a time limit of 3600 seconds; 1221 instances were solved by
at least one of the candidate solvers within this limit. We took the median of
three runs as the run time.

All experiments were run with binaries compiled with g++ version 4.4.3 and
Boost version 1.40.0 on machines with 8 core Intel E5430 2.66GHz, 8GB RAM
running CentOS with Linux kernel 2.6.18-164.6.1.el5 64Bit. Our reference solver
is Minion [8] version 0.9. The binaries and instances required to reproduce the
results are available from the authors on request.

1 http://tinyurl.com/y6hpphs

4 Instance attributes and their measurement

We measured 38 attributes of the problem instances. They describe a wide range
of features such as constraint and variable statistics and a number of attributes
based on the primal graph. The primal graph g = 〈V,E〉 has a vertex for every
CSP variable, and two vertices are connected by an edge iff the two variables
are in the scope of a constraint together.

Edge density The number of edges in g divided by the number of pairs of
distinct vertices.

Clustering coefficient For a vertex v, the set of neighbours of v is n(v). The
edge density among the vertices n(v) is calculated. The clustering coefficient is
the mean average of this local edge density for all v.

Normalised degree The normalised degree of a vertex is its degree divided by
|V |. The minimum, maximum, mean and median normalised degree are used.

Normalised standard deviation of degree The standard deviation of ver-
tex degree is normalised by dividing by |V |.

Width of ordering The width of a vertex v in an ordered graph, given by the
variable ordering, is its number of parents (i.e. neighbours that precede v in the
ordering). The width of the ordering is the maximum width over all vertices [5]
and normalised by the number of vertices.

Width of graph The width of a graph is the minimum width over all possible
orderings, normalised by the number of vertices.

Variable domains The quartiles and mean over the domains of all variables.
Constraint arity The quartiles and the mean of the arity of all constraints (the
number of variables constrained by it), normalised by the number of constraints.

Multiple shared variables The proportion of pairs of constraints that share
more than one variable.

Normalised mean constraints per variable For each variable, we count the
number of constraints on the variable. The mean average is taken, and this is
normalised by dividing by the number of constraints.

Normalised SAC literals The number of literals pruned by singleton consis-
tency preprocessing, as a proportion of all literals.

Ratio of auxiliary variables to other variables The ratio of auxiliary vari-
ables to other variables.

Tightness The tightness of a constraint is the proportion of disallowed tuples.
The tightness is estimated by sampling 1000 random tuples from the variable
domains and testing if the tuple satisfies the constraint. The tightness quartiles
and the mean over all constraints are used.

Proportion of symmetric variables In many CSPs, the variables form equiv-
alence classes where the number and type of constraints a variable is in are the
same. The first stage of the algorithm used by Nauty [15] detects this property.
Given a partition of n variables generated by this algorithm, we transform this
into a number between 0 and 1 by taking the proportion of all pairs of variables
which are in the same part of the partition.

Alldifferent statistics The size of the union of all variables in an alldifferent
constraint divided by the number of variables |V |. We used the quartiles and
the mean over all alldifferent constraints.

We intended to cover a wide range of possible factors that affect the perfor-
mance of the different algorithms with these attributes. We normalised attributes
that would be specific to problem instances of a particular size. This is based on
the intuition that similar instances of different sizes are likely to behave simi-
larly with respect to the investigated algorithms. Computing the attributes took
about 15 seconds per instance on average.

Not all attributes were applicable for both of the algorithm selection prob-
lems. For lazy learning, the alldifferent statistics did not apply. For alldifferent,
we did not use the number of literals that SAC removes because it is different
for different versions of the constraint.

5 Learning classifiers

We annotated each benchmark instance with the algorithm variant that per-
formed best on it based on the run times of the candidate algorithms for the
specific algorithm selection problem. For the decision between the different imple-
mentations of the alldifferent constraint, we additionally considered the number
of search nodes per second. If the problem instance was solved by no candidate
within the timeout, we assigned the annotation “don’t know”. This data was
given to the machine learning algorithms to learn a classifier that, given an in-
stances, predicts which one of the algorithms will have the best performance on
it.

We used the WEKA [11] machine learning software through the R interface
to learn classifiers. We used almost all of the WEKA algorithms that were appli-
cable to our problems – decision rules, decision trees, Bayesian classifiers, near-
est neighbour and neural networks. Our selection is broad and includes almost
all major machine learning methodologies. The specific classifiers we used are
BayesNet, BFTree, ConjunctiveRule, DecisionTable, FT, HyperPipes, IBk,
J48, J48graft, JRip, LADTree, MultilayerPerceptron, NBTree, OneR, PART,
RandomForest, RandomTree and REPTree, all of which are described in [21].

We decided to measure the performance of the learned classifiers not in terms
of the usual machine learning performance measures, but in terms of misclassi-
fication penalty [22]. The misclassification penalty is the additional CPU time
we need to solve a problem instance if not choosing the optimal algorithm. This
is based on the intuition that we do not particularly care about classifying as
many instances correctly as possible; we rather care that the instances that are
important to us are classified correctly. The higher the potential gain for an
instance, the more important it is to us. If the selected algorithm was not able
to solve the problem, we assumed the timeout value minus the CPU time the
fastest algorithm took to be the misclassification penalty. This only gives a weak
lower bound, but the correct value cannot be estimated easily.

We furthermore decided to assign the maximum misclassification penalty (or
the maximum possible gain) as a cost to each instance to bias machine learning
towards the instances we care about most. Each instance was attached a cost of
max(1, 1 + log2(penalty)). Note that we used the absolute and not the relative

cost value – if the difference in absolute time is only 0.1 seconds, it does not
matter if the relative difference is orders of magnitude.

To combine the different classifiers, we take the predictions of each classifier
for an individual problem and choose the one that occurs most often; breaking
ties by alphanumeric ordering. A thorough investigation in [3] showed that voting
performs better in general than other techniques.

For each data set of the different algorithm selection problems, we generated
partitions as follows. First, we removed the instances of a randomly selected
problem class. Then we removed about 33% of the remaining instances at ran-
dom. This data was used for training and the removed instances for testing. For
both data sets, we generated 10 different partitions of approximately equal size
this way.

The most important issue we are addressing is the generality of the learned
classifier – given its performance on the data set we are using for testing, will
it perform equally well on unknown data? There are two different cases. The
unknown data could be new instances from a problem class which the classifier
has seen before or the data could consist of unknown instances from unknown
problem classes. We address both scenarios by removing individual problem
classes and random instances from the original data set. Using this method, we
test for overfitted classifiers at the same time.

We ran each machine learning algorithm on each training partition and eval-
uated its performance in terms of misclassification penalty through stratified
10-fold cross-validation [13]. The median of the 10 folds denotes our overall per-
formance estimate. We then evaluated the performance of each of these classifiers
on the respective test partition.

6 Results

Figure 1 shows the performance on the different partitions. It is obvious that the
performance on one set of data, even when using cross-validation, is not a good
predictor of the performance on another set of data, as shown by the length of
the arrows. In only one of twenty cases, the classifier which performs best on
the training partition is also the best one on the test partition. In two cases, the
best classifier actually becomes the worst on new data. It also becomes clear that
this effect is attenuated by using the ensemble classifier – in almost all cases, the
performance differences on different sets of data are less pronounced, as denoted
by the lengths of the arrows starting at the crosses (ensemble classifier) versus
the ones starting at the circles (single classifier). The ensemble classifier is more
robust in that its performance is predictable more reliably. The algorithm with
the best average performance over all the data was BFTree; the difference to the
ensemble classifier was about 1%.

The figure furthermore shows that for several different partitions, our ensem-
ble classifier performs better than the “best” individual algorithm on a single
partition most of the time and is often close to or even better than the individual
classifier that would be the best on unseen data. We achieve significant improve-

lazy learning

●
● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ●

● ●
●

relative misclassification penalty

0.0

0.2

0.4

0.6

0.8

1.0

alldifferent

●

●
● ● ●

● ●
●

● ●

●

●
● ●

●

●

● ●

●

●

Fig. 1. Classifier performance on the different partitions. The misclassification penal-
ties were normalised by the best classifier across all partitions (i.e. the misclassification
penalty of the best classifier is always 1) and then scaled between best and worst clas-
sifier to make the different data sets comparable (i.e. the best classifier is now 0 and
the worst 1). In absolute terms, the difference between best and worst is up to several
orders of magnitude. The black circles show the performance of the classifier which
performed best during cross-validation. The larger, grey circles show the performance
of the classifier which was the best one on the test partition. The cross denotes the
performance of the ensemble classifier during cross-validation. The end of the arrows
denotes the performance on the test partition for best individual and ensemble clas-
sifiers. The length of the arrow denotes the uncertainty of the prediction of classifier
performance from cross-validation.

ments without time-consuming inspection and evaluation of individual machine
learning algorithms to select the most suitable one and tune its parameters.

Our results do not depend on a large number of machine learning algorithms.
Figure 2 shows the results with just three algorithms from different machine
learning methodologies – BayesNet, MultilayerPerceptron (a neural network
algorithm) and J48 (an implementation of the well-known C4.5 algorithm [18]).
The improvements over using a single classifier are comparable to the ones shown
in Figure 1. In some cases we even achieve an improvement over the best indi-
vidual classifier through the combination of the predictions of several classifiers.
Note that these three individual algorithms were not selected because of par-
ticularly good overall performance – none of them was the best on average and
they often performed worse than the ensemble classifier.

In terms of solve time, the ensemble classification approach improves over al-
ways making a default decision. The improvement is substantial for lazy learning
and marginal for alldifferent.

7 Conclusions

We have presented a thorough and in-depth investigation into the variability of
the performance of different machine learning algorithms and techniques on two
real-world algorithm selection problems. We based our investigation on exper-
imental results for a large number of diverse problems and a large number of

lazy learning

● ● ● ● ● ● ● ● ● ●
●

●

●
● ●

● ●
●

●
●

relative misclassification penalty

0.0

0.2

0.4

0.6

0.8

1.0

alldifferent

● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ● ●

●

Fig. 2. Classifier performance for three different classifiers. Note that in five cases the
performance of the ensemble classifier was better than that of an individual best one.

different machine learning techniques. Although much research has been done
in the field of algorithm selection and algorithm tuning, no similar evaluation of
the methodology has been undertaken, to the best of our knowledge.

Our results conclusively show that the performance of a machine learning
algorithm is so variable that predictions as to its generality and performance on
new data cannot be made without investing significant effort into substantiating
these claims. Furthermore, an algorithm which may have a low performance and
therefore appear unsuitable on test data has the potential for performing much
better on unknown data.

The technique we are proposing for the configuration of constraint solvers,
ensemble classification by combining the predictions of several classifiers by ma-
jority vote, improves on this. Our experiments provide strong evidence that its
performance on several data sets will in general be better than the performance
of an individual best classifier on one data set. Indeed it will be close to the
performance achieved by the classifier in the ensemble which is the best for a
given data set. We furthermore observed cases in which the ensemble classifier
was better than a single classifier even on a single data set.

While combining several classifiers adds significant overhead in the offline
phase when more classifiers need to be learned, the overhead in the online phase
when new instances are classified was negligible in our experiments. The time
required to compute the instance attributes was much higher than the time
for running additional classifiers and combining their predictions in all cases.
In particular, running an individual classifier on a single problem instance only
takes a few milliseconds on average.

The main advantage of ensemble classification is that individual machine
learning algorithms can be combined without intrinsic knowledge about each one
of them. The level of machine learning expertise required is reduced significantly
without affecting the results significantly. Note that this does not mitigate the
need for domain knowledge to select relevant features for example. Ensemble
classification enables practitioners without a lot of machine learning knowledge
to apply machine learning to their problems.

Acknowledgements

We thank Chris Jefferson for the description of one of the problem attributes
used in the analysis, Jesse Hoey for useful discussions about machine learning,
and anonymous reviewers for their feedback. Lars Kotthoff is supported by a
SICSA studentship. This work was supported by EPSRC grant EP/H004092/1.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: CP. pp. 142–157 (2009)

2. Bain, S., Thornton, J., Sattar, A.: Evolving Variable-Ordering heuristics for con-
strained optimisation. In: CP. p. 732736 (2005)

3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Mach. Learn. 36(1-2), 105–139 (1999)

4. Chen, F., Jin, R.: Active algorithm selection. In: AAAI. pp. 534–539 (2007)
5. Dechter, R.: Constraint Processing. Elsevier Science (2003)
6. Dietterich, T.G.: Ensemble methods in machine learning. In: First International

Workshop on Multiple Classifier Systems. pp. 1–15 (2000)
7. Epstein, S., Freuder, E., Wallace, R., Morozov, A., Samuels, B.: The adaptive

constraint engine. In: CP. pp. 525–542 (2002)
8. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:

ECAI. pp. 98–102 (2006)
9. Gent, I., Miguel, I., Moore, N.: Lazy explanations for constraint propagators. In:

PADL (2010)
10. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent

constraint: An empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)
11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The

WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)
12. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically

building local search SAT solvers from components. In: IJCAI. pp. 517–524 (2009)
13. Kohavi, R.: A study of Cross-Validation and bootstrap for accuracy estimation

and model selection. In: IJCAI. pp. 1137–1143 (1995)
14. Lavesson, N., Davidsson, P.: Quantifying the impact of learning algorithm param-

eter tuning. In: AAAI. pp. 395–400 (2006)
15. McKay, B.: Practical graph isomorphism. In: Numerical mathematics and comput-

ing. pp. 45–87 (1981)
16. Minton, S.: Automatically configuring constraint satisfaction programs: A case

study. Constraints 1(1/2), 7–43 (1996)
17. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: Irish Conf. on
AI (2008)

18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
19. Rice, J.: The algorithm selection problem. Adv. in Computers 15, 65–118 (1976)
20. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA: a

knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw.
22(4), 447–468 (1996)

21. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (2005)

22. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008)

