
Hybrid Regression-Classification Models for Algorithm
Selection

Lars Kotthoff1

Abstract. Many state of the art Algorithm Selection systems use
Machine Learning to either predict the run time or a similar perfor-
mance measure of each of a set of algorithms and choose the algo-
rithm with the best predicted performance or predict the best algo-
rithm directly. We present a technique based on the well-established
Machine Learning technique of stacking that combines the two ap-
proaches into a new hybrid approach and predicts the best algorithm
based on predicted run times. We demonstrate significant perfor-
mance improvements of up to a factor of six compared to the pre-
vious state of the art. Our approach is widely applicable and does not
place any restrictions on the performance measure used, the way to
predict it or the Machine Learning used to predict the best algorithm.
We investigate different ways of deriving new Machine Learning fea-
tures from the predicted performance measures and evaluate their ef-
fectiveness in increasing performance further. We use five different
regression algorithms for performance prediction on five data sets
from the literature and present strong empirical evidence that shows
the effectiveness of our approach.

1 Introduction
The Algorithm Selection Problem [17] is to select the most suitable
algorithm for solving a particular problem. Especially with the rise of
algorithm portfolios [10], an increasing amount of research has been
devoted to finding better ways of identifying suitable algorithms in
practice. An algorithm portfolio usually consists of a selection of
state of the art algorithms for solving a particular kind of problem.
Portfolio solvers such as SATzilla [23] have achieved impressive per-
formance improvements over individual state of the art solvers.

A crucial part of such portfolio solvers is the system that chooses
which algorithm from the portfolio to use for solving a given prob-
lem. The relationship between an algorithm, a problem and the per-
formance of the algorithm on the problem cannot be quantified easily
such that the performance on unseen problems can be predicted re-
liably in all but the most trivial cases. Contemporary systems almost
always use some kind of Machine Learning to build performance
models of algorithms or algorithm portfolios and predict which algo-
rithm to use on new problems.

There are a lot of different Machine Learning approaches that can
be applied to solve the Algorithm Selection Problem. The two most
common ones are as follows. A Machine Learning classifier can be
trained to directly predict the portfolio algorithm with the best perfor-
mance on an unseen problem. This is used for example in [8,15,16].
Alternatively, Machine Learning regression can be used to predict
the performance, usually the run time, of each of the algorithms in
the portfolio on the problem. The algorithm with the best predicted

1 University of St Andrews, larsko@cs.st-andrews.ac.uk

performance is chosen. This indirect way of determining the best
portfolio algorithm is used for example in [18, 19, 23].

Approaches that predict the performance of each algorithm use the
predicted performance at face value. While individual predictions are
often far off the actual performance, the best algorithm may still be
identified as long as the order of the algorithms with regards to their
performance can be inferred correctly. While this approach works
well in practice, there remains significant room for improvements.

We propose to take the predicted performance of individual port-
folio algorithms not at face value, but rather treat them as inputs to
another Machine Learning step that ultimately chooses the algorithm
to be used to solve the problem. We treat all predictions of the first
step equally and do not attempt to identify the best Machine Learn-
ing technique for the problem. This hybrid approach combines both
regression and classification learners. The approach is applicable in
general and does not rely on any particular kind of performance mea-
sure or Machine Learning to predict it. We empirically demonstrate
significant performance improvements compared to always choosing
the algorithm with the best predicted performance measure.

2 Background
A common approach to solving the Algorithm Selection Problem
with algorithm portfolios is to predict the performance of each al-
gorithm in the portfolio on the problem to tackle. During a training
phase, the performance of each of the algorithms is observed on a set
of problems. This information, along with features characterising the
problems that were solved, is used to build a performance model for
each algorithm. On new problems, the model uses the same features
to make a performance prediction.

There are variations of the predicted performance measure; some
approaches predict the run time [12, 19, 21], others the log of the run
time [23] or a compound measure that accounts for possible timeouts
within a set time limit [24]. In some publications, the performance is
estimated by means of a proxy measure. Allen and Minton [1] for
example predict the number of constraint checks required to solve a
constraint problem and Lobjois and Lemaı̂tre [14] predict the number
of search nodes to explore and the time per node. The predictions are
used to make the selection which portfolio algorithm to choose.

The common trait of all these approaches is that, in order to com-
bine the performance predictions for the individual algorithms, the
min function is used. That is, the algorithm with the predicted low-
est run time or the predicted best performance measure is chosen
for solving the problem. The advantage of using this simple way of
combining the predictions, apart from its computational simplicity, is
that the inferred algorithm will be correct as long its predicted perfor-
mance is the better than the other predicted performances. The actual
value of the prediction does not matter, as it is only compared to



the other predictions. Similarly, the ordering of the algorithms in the
portfolio according to their performance does not need to be totally
correct as long as the best algorithm can be identified correctly.

While recent approaches have experimented with predicting the
complete ordering of the algorithms [13], they report that the per-
formance is not competitive with other approaches, attesting to the
difficulty of such a prediction. However, orderings of classification
algorithms according to their accuracy have been predicted in the
Machine Learning community [3, 20].

A related approach is to predict schedules according to which to
run the algorithms in the portfolio [7, 15]. Predicting schedules also
relies on the fact that the performance ordering of the algorithms is
correct. It is more robust with respect to prediction errors though, as
more than one algorithm is run. Other research has tried to predict
when to switch the algorithm being used to solve a problem [2, 4],
which also reduces the negative impact of an initial bad choice.

The idea of using the predictions of one Machine Learning algo-
rithm as features for another Machine Learning algorithm is known
as stacked generalisation, or stacking [22]. The rationale of stack-
ing is that the imperfect predictions of one model can be improved
by another model that learns to correct the errors of the first model.
The Machine Learning algorithms that are stacked on top of each
other learn models that do not reflect the original problem, but try
to identify and correct the prediction mistakes earlier models make.
The technique is a member of the family of ensemble techniques [5]
and closely related to boosting [6], where Machine Learning models
with low performance are engineered to complement each other.

Stacking is a well-established technique in the Machine Learning
community. However, to the best of our knowledge, stacking tech-
niques have never been applied to Algorithm Selection before.

3 Methodology

We measure the performance of an Algorithm Selection system in
terms of misclassification penalty. The misclassification penalty is
the additional time a system needs to solve a set of problems because
of wrong choices. If the algorithm with the best performance is cho-
sen for each respective problem, the misclassification penalty is 0.
We give the misclassification penalty in seconds. When a timeout
occurs, we assume the timeout as the run time to calculate the mis-
classification penalty. This only gives a lower bound on the actual
misclassification penalty, but we cannot determine the correct value
without running the algorithm to completion.

We use the WEKA Machine Learning software [11] and the
algorithms implemented in it. The evaluation includes the re-
gression algorithms GaussianProcesses, LibSVM (ε and ν),
LinearRegression and REPTree. These regression algorithms
represent a variety of different state of the art Machine Learning ap-
proaches. The classification algorithm SimpleLogistic is used
to combine the predictions of the regression models and choose the
best portfolio algorithm. The maximum misclassification penalty for
a particular problem instance is used as a weight during training
to bias the learned logistic regression model towards the instances
where we can gain or lose a lot [9]. The maximum misclassification
penalty is incurred when the worst algorithm for a problem is chosen.

The performance of a Machine Learning algorithm is evaluated
using ten fold stratified cross validation. A data set is partitioned into
ten distinct subsets of roughly equal size. Nine of these sets serve as
training data and the tenth as test data. This is repeated for all differ-
ent combinations of training and test sets. In the end, every problem
instance in the data set will have been used for both training and test-

ing. Stratification ensures that the distribution of the class labels to
predict is the same in each subset as it is in the full data set. We cal-
culate the sum of the misclassification penalties across the different
folds to estimate the penalty on the whole data set.

We tuned all Machine Learning algorithms by evaluating their per-
formance across a number of different parameter configurations. The
default values used by WEKA achieved the best performance and
therefore we decided to use the defaults. It is conceivable that the
performance could be improved further by evaluating a larger space
of parameter configurations.

We evaluate the performance on five data sets taken from the litera-
ture. We take three sets from the training data for SATzilla 2009. This
data consists of SAT instances from three categories – hand-crafted,
industrial and random. They contain 1181, 1183 and 2308 instances
and are denoted SAT-HAN, SAT-IND and SAT-RAN, respectively.
The SATzilla authors use 91 attributes for each instance and select
a SAT solver from a portfolio of 19 solvers2. We adjusted the time-
out values reported in the training data available on the website to
3600 seconds after consultation with the SATzilla team as some of
the reported timeout values are incorrect.

The fourth data set comes from the Quantified Boolean Formulae
(QBF) Solver Evaluation 20103 and consists of 1368 QBF instances
from the main, small hard, 2QBF and random tracks. It is denoted
QBF. 46 attributes are calculated for each instance and we select from
a portfolio of five QBF solvers. Each solver was run on each instance
for at most 3600 CPU seconds. If the solver ran out of memory or
was unable to solve an instance, we assumed the timeout value for
the runtime. The experiments were run on a machine with a dual four
core Intel E5430 2.66 GHz processor and 16 GB RAM. Our last data
set, denoted CSP, is taken from from [8] and selects from a portfolio
of two solvers for a total of 2028 constraint problem instances from
46 problem classes with 17 attributes each.

4 Motivation
The success of regression methods that predict the run time in Al-
gorithm Selection suggests that most of the time, the predicted per-
formance values allow to derive an ordering that puts the actual best
portfolio algorithm at the corresponding position. In order to assess
the potential improvement a hybrid approach could achieve, we mea-
sured the percentage of the problem instances of each data set where
this is the case. We used ten fold stratified cross validation, as de-
scribed above. The results are shown in Figure 1.

The results clearly show that there is significant scope for improve-
ment, especially with portfolios that contain a relatively large number
of algorithms. Choosing a portfolio algorithm at random would put
the percentage of problems for which the best algorithm is not cho-
sen at 50% for the CSP data set, 80% for QBF and 95% for the SAT
data sets. Using the min function unsurprisingly improves signifi-
cantly on that, but the fraction of problem instances for which the
predicted lowest run time does not denote the best solver is still very
high in some cases. Running LibSVM ν on the SAT-RAN data set
and predicting the run time identifies the best algorithm correctly in
only 12% of the cases for example.

Using the predictions as input to a classifier that learns to account
for their errors has the potential to increase performance significantly.
The idea of learning models that correct the errors of other models
has been used with great success in the form of boosting in the Ma-
chine Learning community.

2 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
3 http://www.qbflib.org/index_eval.php

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://www.qbflib.org/index_eval.php


Index

25 31

GaussianProcesses
CSP

Index

37
36

GaussianProcesses
QBF

Index

52

58

GaussianProcesses
SAT−HAN

Index

54

63

GaussianProcesses
SAT−IND

42

55

GaussianProcesses
SAT−RAN

Index

1:
7

27 30

LinearRegression
CSP

Index

1:
7

35
35

LinearRegression
QBF

Index

1:
7

52

60

LinearRegression
SAT−HAN

Index

1:
7

56

65

LinearRegression
SAT−IND

1:
7

43

57

LinearRegression
SAT−RAN

Index
1:

7

39
27

REPTree
CSP

Index

1:
7

26 40

REPTree
QBF

Index

1:
7

54

63

REPTree
SAT−HAN

Index

1:
7

63
70

REPTree
SAT−IND

1:
7

53

63

REPTree
SAT−RAN

Index

1:
7 1613

LibSVM epsilon
CSP

Index

1:
7

42
47

LibSVM epsilon
QBF

Index

1:
7

66
66

LibSVM epsilon
SAT−HAN

Index

1:
7

67
67

LibSVM epsilon
SAT−IND

1:
7 7575

LibSVM epsilon
SAT−RAN

Index

1:
7

21 20

LibSVM nu
CSP

Index

1:
7

40
41

LibSVM nu
QBF

Index

1:
7

66
68

LibSVM nu
SAT−HAN

Index

1:
7

67
67

LibSVM nu
SAT−IND

1:
7

72
88

LibSVM nu
SAT−RAN

Figure 1. Percentage of problem instances on which the actual best portfo-
lio algorithm is not chosen by the min function for all data sets and regres-
sion algorithms. The inner arc denotes the percentage for the predicted run
time and the outer arc the percentage for the predicted log of the run time.
The angle covered by the arc denotes the percentage, which is also shown
as a number. A full circle means that the best portfolio algorithm is chosen
for none of the problem instances, no arc means that the best algorithm was
chosen in all cases.

5 Stacking classification on regression
The current state of the art is to select the algorithm with the lowest
predicted run time, i.e. combining the predictions of the regression
models using the min function.

abest = min({p(a) | a ∈ A})

where A is the set of algorithms in the portfolio and p(a) the pre-
dicted run time of an algorithm. This relies on the predictions being
accurate at least relative to each other in order for the best algorithm
to be identified.

The idea behind our approach is simple. Instead of using a constant
function such as min to combine the outputs of run time predictions
for the algorithms in the portfolio, we use Machine Learning to in-
duce a classifier C that learns to select an algorithm with the help of
the predicted run times.

abest = C({p(a) | a ∈ A})

This approach allows for more flexibility in combining the indi-
vidual predictions and, crucially, replaces a hand-crafted rule with a
mechanism that automatically adapts the model used to make deci-
sions to the data that it is processing. This notion is at the very core
of Algorithm Selection and the source of significant performance im-
provements over the previous state of the art in many areas. Even if

the predicted performance of the algorithms in the portfolio was the
opposite of the desired outcome, i.e. the best algorithm has the worst
predicted performance, our approach would be able to cope with this,
whereas the min function would fail.

Our hybrid approach is agnostic to the way the predicted run times
are obtained and can be combined with any of the approaches to do
so from the literature. It does not require predictions of the run time
either, any of the performance measures researchers have predicted
to perform Algorithm Selection can be used.

We investigate the following different ways of using the predicted
run times as features to induce a classifier C. First, we use only the
predicted run times themselves.

F = {p(a) | a ∈ A}

Similarly, we use the predicted logs of the run times.

F log = {plog(a) | a ∈ A}

where plog(a) is the predicted log of the run time of algorithm a
on a particular problem. Second, we compute new feature sets Frel

and Fdiff with features based on the differences between pairs of
predicted run times or predicted logs of run times.

Frel = {σ(f, g) | f, g ∈ F , f ̸= g}

where

σ(f, g) =


−1 if f < g

0 if f = g

1 otherwise

and
Fdiff = {f − g | f, g ∈ F , f ̸= g}

In the first case, we only take the qualitative difference between two
feature values into account, i.e. whether the first value is less than,
equal to or greater than the second value. In the second case, we
quantify the difference. New feature sets F log

rel and F log
diff based on

the predicted log of the run time are created the same way.
All new feature sets are used on their own and in combination with

the original feature sets F and Flog , respectively for the differences
based on the predicted run time and the predicted log of the run time.
The implementation of the computation of the new features consid-
ers each pair of predicted performance measures only once, e.g. for
predicted run times f and g where f ̸= g, we only consider σ(f, g)
and f − g, not σ(g, f) or g − f .

In total, we consider ten different feature sets. First, the two feature
sets that contain only the predictions of the run time and the log of the
run time F and F log . Second, four computed feature sets based on
the qualitative and quantitative differences between pairs of feature
values for both the predictions of the run time and the log of the run
time Frel, Fdiff , F log

rel and F log
diff . Third, we augment the original

feature sets with the appropriate new feature sets for the final four
feature sets F ∪ Frel, F ∪ Fdiff , F log ∪ F log

rel and F log ∪ F log
diff .

Using the pairwise differences between the predicted run times
was motivated by the fact that the previous state of the art is to al-
ways pick the minimum predicted time. This min function is difficult
to learn if only the times are available as features because Machine
Learning does not usually consider the relation between feature val-
ues, but only the feature values themselves. In order to facilitate this
comparison, which is necessary to learn a min function, the differ-
ences between pairs of predicted run times were added as additional
features.



6 Experimental results

The results are presented in terms of the previous state of the art,
the selection of the best algorithm according to the lowest predicted
run time. The performance of the different feature sets we evaluated
is shown in terms of that baseline. Compared to predicting the best
algorithm directly with a classifier, our approach offers similar per-
formance in most cases and significant improvements in a few cases.
Our approach also compares favourably with the regression model
used in SATzilla, improving on its performance by a factor of 3 in
one case. Note that SATzilla’s performance in practice is also depen-
dent on the other techniques used in the system however.

Previous research is unclear as to whether predicting the run time
itself or the logarithm thereof gives better overall performance. Xu et
al. [23] report that they found a log transformation useful in practice,
while Kotthoff et al. [13] found no significant difference. Figure 2
clearly shows that the performance of our hybrid approach is signif-
icantly better with predictions of the log of the runtime. Not only
the maximum improvement is higher, but the median, i.e. expected,
performance improves on the previous state of the art.

Even when applying classification in a straightforward fashion and
using only the predicted log of the run times as features (feature set
F log), we already beat the min function in terms of expected (me-
dian) performance. The very high improvement in one case makes
the average mean improvement even more significant than that of the
median. Deriving new features from the predictions of the regres-
sion algorithms improves the performance somewhat, but not signifi-
cantly. The main difference is that the loss of performance compared
to the min function in cases where this occurs is less severe.

Figure 2 also shows that using the quantitative difference between
pairs of predicted run times as features achieves significantly better
performance than using the qualitative difference. Both on their own
and in conjunction with the actual predicted performance values, the
performance achieved with the quantitative features beats the perfor-
mance of the qualitative features.

The performance improvements achieved with the feature sets
F log , F log

diff and F log ∪ F log
diff are almost identical. The logistic

regression classifier is able to build good models both with the pre-
dicted log of the run time and the pairwise differences between the
predictions. This suggests that the differences carry as much infor-
mation as the log of the run times when it comes to deciding which
algorithm has the best performance on a problem. The actual value
of the predicted performance measure is not relevant to the choice of
the best algorithm, but the order of the algorithms according to the
predicted performance has to be correct.

Figure 3 shows that the hybrid approach improves the percent-
age of problem instances where the best portfolio algorithm is not
identified correctly in most cases (17 out of 25). This reflects the per-
formance improvements in terms of misclassification penalty for this
feature set as shown in Figure 2. The difference is shown for one of
the feature sets that achieve the highest performance improvements.
The graphs for the other feature sets similarly reflect the performance
improvements in Figure 2 and are omitted due to space constraints.

6.1 Performance improvements

There is no feature set where our method of training and running a
Machine Learning classifier to combine the predicted run times of the
algorithms in the algorithm portfolio improves over using the min
function to choose the best algorithm for all data sets and regression
algorithms. Regression algorithm – data set pairs that do not achieve

Index

27 25

GaussianProcesses
CSP

Index

33 37

GaussianProcesses
QBF

Index

49
52

GaussianProcesses
SAT−HAN

Index

52
54

GaussianProcesses
SAT−IND

46

42

GaussianProcesses
SAT−RAN

Index

1:
7

22
27

LinearRegression
CSP

Index

1:
7

31 35

LinearRegression
QBF

Index

1:
7

48
52

LinearRegression
SAT−HAN

Index

1:
7

53
56

LinearRegression
SAT−IND

1:
7

49

43

LinearRegression
SAT−RAN

Index

1:
7

21
39

REPTree
CSP

Index

1:
7

26 26

REPTree
QBF

Index

1:
7

52
54

REPTree
SAT−HAN

Index

1:
7

54

63

REPTree
SAT−IND

1:
7

54
53

REPTree
SAT−RAN

Index

1:
7 1816

LibSVM epsilon
CSP

Index

1:
7

41
42

LibSVM epsilon
QBF

Index

1:
7 74

66

LibSVM epsilon
SAT−HAN

Index

1:
7

65
67

LibSVM epsilon
SAT−IND

1:
7 7475

LibSVM epsilon
SAT−RAN

Index

1:
7

2021

LibSVM nu
CSP

Index

1:
7

39
40

LibSVM nu
QBF

Index

1:
7 79

66

LibSVM nu
SAT−HAN

Index

1:
7

63
67

LibSVM nu
SAT−IND

1:
7 7572

LibSVM nu
SAT−RAN

Figure 3. Percentage of problem instances on which the actual best port-
folio algorithm is not chosen for all data sets and regression algorithms. The
inner arc denotes the percentage for the min function on predictions of the
log of the run time (the outer arc in Figure 1) and the outer arc that for the
hybrid approach with feature set F log ∪ F log

diff . If the fraction of the hy-
brid approach is smaller than that of the min function (the angle covered is
smaller), the outer arc is drawn thinner than the inner arc, else thicker.

an improvement with one feature set do achieve it with other feature
sets though. For the F log

diff feature set, the performance is worse than
that of the min function in only 6 out of 25 cases. For the F log ∪
F log

diff feature set, this is the case for eight regression algorithm – data
set pairs. Note that these are not the same cases as those in Figure 3
that do not improve on the percentage of misclassifications though.
For REPTree and LinearRegression on the SAT-IND data set,
our approach is always better than the min function regardless of the
feature set and for LibSVM ν on the QBF data set it is never worse.

The improvement in terms of the fraction of problem instances for
which the best portfolio algorithm is not identified (cf. Figure 3) is in
general a good indicator of the performance improvement in terms of
misclassification penalty. There are also a few cases though when the
best portfolio algorithm is identified more often but the misclassifica-
tion penalty increases and vice versa, as mentioned above. However,
when this occurs, the differences are small, e.g. a small improvement
of the percentage of misclassifications might see a small drop in per-
formance in terms of misclassification penalty.

There is no clear pattern that offers an explanation for the be-
haviour of the hybrid approach when it does not improve perfor-
mance. In some cases, the behaviour occurs when the min function
achieves relatively bad performance. This could indicate a floor ef-
fect, i.e. that any further improvements in performance are too dif-
ficult to achieve given the available information. On the other hand,
the behaviour also occurs when the min function achieves very good



●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●●● ●

●

●

● ●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

0.5

1.0

2.0

5.0

F Flog Frel Frel
log

Fdiff Fdiff
log

F∪Frel Flog∪Frel
log

F∪Fdiff Flog∪Fdiff
log

improvement [factor]

Figure 2. Performance improvements across all data sets and regression algorithms for different feature sets. Factors greater than 1 mean that the performance
of the hybrid approach is better than simply using a min function to combine the predictions. The lower and upper edges of the boxes show the 25th and 75th
percentile, respectively, and the thick line inside the boxes the median. The horizontal dashed lines show the mean performance improvement. The grey dots
denote the performance improvement for individual Machine Learning algorithm – data set combinations.

performance already. This could be an indication of a ceiling ef-
fect, i.e. the original features used for the regression models enable
good performance predictions that reflect the true order of the perfor-
mances of the portfolio algorithms. The investigation of the causes
of this behaviour and ways of mitigating it is an area of future work.

6.2 Other classifiers

In addition to the logistic regression model, we also evaluated the
performance improvements of the hybrid approach with a C4.5 deci-
sion tree inducer (J48 in WEKA) using the same feature sets and the
same methodology. While the performance was not as good as that of
the logistic regression classifier, we found the same general pattern
as shown in Figure 2. Predicting the log of the run time instead of
the run time itself and using the quantitative difference between pre-
dicted values instead of the qualitative one improves performance.

This result demonstrates that the hybrid approach is not limited
to our chosen classifier. The performance improvements over using
the min function will depend on that choice in practice however.
If the Machine Learning algorithm is unable to build a model that
reflects the relationship between the predicted performance measures
and the best portfolio algorithm, it will not be able to achieve any
improvements.

The concept of stacking a classifier on top of the outputs of re-
gression models is not limited to a particular Machine Learning al-
gorithm. In principle, any learner that is able to distinguish between
multiple classes can be used. Our choice of a logistic regression clas-
sifier was motivated by the conceptual simplicity of the algorithm
and its ability to learn a model akin to a min function, given the
pairwise differences between predicted run times as features. Obser-
vations in the paper that introduced stacking [22] also suggest that a
logistic regression approach would be suitable in this context.

6.3 Overhead

The hybrid approach incurs a certain overhead because it builds and
evaluates a model on top of the run time predictions for each algo-
rithm. The relative amount of the overhead depends on the size of
the portfolio – training and running regression models for two differ-
ent algorithms is much faster than doing the same for 19 algorithms.
The bulk of this overhead is incurred during the offline training phase
when the Machine Learning models are built though. The time taken
for this phase is usually of less interest because the aim is to achieve
good performance online, i.e. on new problems. In practice, the cost
of running a regression model or classifier on a problem is usually
dwarfed by the cost of computing the problem features. Many pub-
lications recognise this problem and take explicit steps to mitigate
it, by for example running a presolver [23] or explicitly excluding
features that are expensive to compute [8].

The overhead of the hybrid approach can be compared to adding
one more algorithm to the portfolio and having to train an additional
model for its performance. In our experiments, the time required for
training the logistic regression model was approximately the same
as the time required to train a performance regression model for one
of the portfolio algorithms. The overhead we observed empirically
corresponded to this and reflected the number of algorithms in the
respective portfolios.

Over all data sets and Machine Learning algorithms in our evalu-
ation, the mean average overhead of training the logistic regression
classifier was 6% of the training time of the regression models to
predict the run time. We measured the overhead for the feature set
F log ∪ F log

diff , but in terms of the total time required for a set of
experiments, all feature sets were similar. The mean average perfor-
mance improvements achieved with the F log∪F log

diff feature set was
24%. The highest relative overhead was incurred on the CSP data set,



where the portfolio is only of size two, but this is also the data set
where we achieve the highest performance improvements of up to a
factor of six.

7 Conclusions and future work
In this paper, we have introduced a hybrid regression-classification
approach for Algorithm Selection. The predictions of regression
models for the performance of algorithms in a portfolio are used
as features for a classifier that selects the best algorithm from the
portfolio for a specific problem to solve. The idea was inspired by
the Machine Learning technique stacking, where the predictions of
a Machine Learning algorithm are used as features for another Ma-
chine Learning algorithm. We evaluated the performance of a logistic
regression classifier on different data from the Algorithm Selection
literature with different feature sets based on the predicted perfor-
mance of a set of algorithms in a portfolio.

We have demonstrated that our hybrid approach has the poten-
tial to improve the performance of current Algorithm Selection sys-
tems significantly and realises it in most cases. We gave empiri-
cal evidence that shows that selecting an algorithm based only on
the best predicted run time is wrong a large percentage of the time
and showed that a classifier improves this percentage in most cases.
Through careful engineering of the features derived from the predic-
tions of run time performance and a log transformation of the run
times, we achieved improvements over a straightforward stacking of
Machine Learning algorithms.

For decades, researchers have used the simple approach of select-
ing the best algorithm directly according to the predicted run time
or a similar performance measure. We have, for the first time, gone
beyond the assumption that the minimum run time denotes the best
algorithm and instead used Machine Learning to correct eventual er-
rors the performance models made. This represents a significant step
in applying sophisticated Machine Learning techniques to the Algo-
rithm Selection Problem.

Our approach does not depend on a particular performance mea-
sure or way of predicting this performance measure. It is applicable
to a wide variety of approaches and can be used in conjunction with
virtually any of the systems that predict the behaviour of individual
portfolio algorithms in the literature. It furthermore does not assume
a specific classifier for selecting the best portfolio algorithm. We
have demonstrated the effectiveness of the hybrid approach with the
most widely used performance measures and a classifier that achieves
good performance improvements, but we are confident that similar
performance improvements can be achieved with other performance
measures and Machine Learning algorithms.

Based on our experiments, we recommend the feature set F log
diff ,

either on its own or in conjunction with F log , to be used for an ap-
proach that builds a classifier on top of the outputs of regression mod-
els for individual portfolio algorithms to decide which algorithm to
choose for a particular problem.

Our method improves over an approach that only predicts the ex-
pected performance and chooses the algorithm with the best predic-
tion for most regression method – data set combinations that we have
investigated. The best observed improvement is a factor of six over
the previous state of the art. It also compares favourably with using a
classifier to directly predict the best algorithm from problem features.

In the future, we would like to continue to develop the hybrid ap-
proach and in particular examine why it decreases the performance
in some cases. With the identification of the factors affecting this
behaviour and ways of mitigating it, the hybrid approach could be

recommended unreservedly over using the simple min function.

ACKNOWLEDGEMENTS
This work was supported by an EPSRC Doctoral Prize and a SICSA
studentship. We thank Ian Gent and the reviewers for feedback.

REFERENCES
[1] John A. Allen and Steven Minton, ‘Selecting the right heuristic algo-

rithm: Runtime performance predictors’, in Canadian Society for Com-
putational Studies of Intelligence, pp. 41–53, (1996).

[2] James E. Borrett, Edward P. K. Tsang, and Natasha R. Walsh, ‘Adaptive
constraint satisfaction: The quickest first principle’, in ECAI, pp. 160–
164, (1996).

[3] Pavel Brazdil and Carlos Soares, ‘A comparison of ranking methods for
classification algorithm selection’, in ECML, pp. 63–74, (2000).

[4] Tom Carchrae and J. Christopher Beck, ‘Low-Knowledge algorithm
control’, in AAAI, pp. 49–54, (2004).

[5] Thomas G. Dietterich, ‘Ensemble methods in machine learning’, in In-
ternational Workshop on Multiple Classifier Systems, pp. 1–15, (2000).

[6] Yoav Freund and Robert E. Schapire, ‘A decision-theoretic generaliza-
tion of on-line learning and an application to boosting’, in EuroCOLT,
pp. 23–37, (1995).

[7] Matteo Gagliolo, Viktor Zhumatiy, and Jürgen Schmidhuber, ‘Adaptive
online time allocation to search algorithms’, in ECML, pp. 134–143,
(2004).

[8] Ian P. Gent, Chris Jefferson, Lars Kotthoff, Ian Miguel, Neil Moore, Pe-
ter Nightingale, and Karen Petrie, ‘Learning when to use lazy learning
in constraint solving’, in ECAI, pp. 873–878, (August 2010).

[9] Ian P. Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale, ‘Machine
learning for constraint solver design a case study for the alldifferent
constraint’, in TRICS, pp. 13–25, (2010).

[10] Carla P. Gomes and Bart Selman, ‘Algorithm portfolios’, Artif. Intell.,
126(1-2), 43–62, (2001).

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten, ‘The WEKA data mining software: An
update’, SIGKDD Explor. Newsl., 11(1), 10–18, (November 2009).

[12] Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart
Selman, and David M. Chickering, ‘A bayesian approach to tackling
hard computational problems’, in UAI, pp. 235–244, (2001).

[13] Lars Kotthoff, Ian P. Gent, and Ian Miguel, ‘A preliminary evaluation of
machine learning in algorithm selection for search problems’, in SoCS,
pp. 84–91, (July 2011).

[14] Lionel Lobjois and Michel Lemaı̂tre, ‘Branch and bound algorithm se-
lection by performance prediction’, in AAAI, pp. 353–358, (1998).

[15] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent,
and Barry O’Sullivan, ‘Using case-based reasoning in an algorithm
portfolio for constraint solving’, in Irish Conference on AI and Cog-
nitive Science, (2008).

[16] Luca Pulina and Armando Tacchella, ‘A multi-engine solver for quan-
tified boolean formulas’, in CP, pp. 574–589, (2007).

[17] John R. Rice, ‘The algorithm selection problem’, Advances in Comput-
ers, 15, 65–118, (1976).

[18] Mark Roberts and Adele E. Howe, ‘Learned models of performance for
many planners’, in ICAPS Workshop AI Planning and Learning, (2007).

[19] Bryan Silverthorn and Risto Miikkulainen, ‘Latent class models for al-
gorithm portfolio methods’, in AAAI, (2010).

[20] Carlos Soares, Pavel B. Brazdil, and Petr Kuba, ‘A Meta-Learning
method to select the kernel width in support vector regression’, Mach.
Learn., 54(3), 195–209, (March 2004).

[21] Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Anupam Joshi,
and Catherine E. Houstis, ‘PYTHIA: a knowledge-based system to se-
lect scientific algorithms’, ACM Trans. Math. Softw., 22(4), 447–468,
(1996).

[22] David H. Wolpert, ‘Stacked generalization’, Neural Networks, 5, 241–
259, (1992).

[23] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown,
‘SATzilla: portfolio-based algorithm selection for SAT’, J. Artif. Intell.
Res., 32, 565–606, (2008).

[24] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown,
‘SATzilla2009: an automatic algorithm portfolio for SAT’, in SAT Com-
petition, (2009).


	Introduction
	Background
	Methodology
	Motivation
	Stacking classification on regression
	Experimental results
	Performance improvements
	Other classifiers
	Overhead

	Conclusions and future work

