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Abstract. We investigate per-instance algorithm selection techniques for solving
the Travelling Salesman Problem (TSP), based on the two state-of-the-art inexact
TSP solvers, LKH and EAX. Our comprehensive experiments demonstrate that
the solvers exhibit complementary performance across a diverse set of instances,
and the potential for improving the state of the art by selecting between them is
significant. Using TSP features from the literature as well as a set of novel fea-
tures, we show that we can capitalise on this potential by building an efficient
selector that achieves significant performance improvements in practice. Our se-
lectors represent a significant improvement in the state-of-the-art in inexact TSP
solving, and hence in the ability to find optimal solutions (without proof of opti-
mality) for challenging TSP instances in practice.

1 Introduction

The travelling salesman problem (TSP) is arguably the most prominent NP-hard com-
binatorial optimisation problem. Given a set of n locations – which, by convention, are
called cities – and pairwise distances between those cities, the objective in the TSP is
to find the shortest round-trip or tour through all cities, i.e., a sequence in which every
city is visited exactly once, except for the last city, which is the same as the first, and
the sum of the distances between successively visited cities along the tour is minimal.
Here, we consider the 2D Euclidean TSP in which the cities correspond to points in
the Euclidean plane and the distances between them are simply the Euclidean distances
between those points. This is the most commonly studied special case of the TSP, and,
like the general TSP, it is known to be NP-hard. The Euclidean TSP has important ap-
plications (e.g., in the fabrication of printed circuit boards) and also arises in the context
of various transportation and logistics applications.

There are two types of TSP algorithms: exact algorithms, which are guaranteed to
find an optimal solution to any TSP instance and, when run to completion, produce
a proof of optimality; and inexact algorithms, which cannot guarantee or prove the
optimality of the solutions found. Intriguingly, the state of the art for both types of
algorithms has been defined by a single solver each for many years: the exact solver
Concorde [1] and the inexact solver LKH [4]. Furthermore, LKH typically finds high-
quality and even optimal solutions much more quickly than Concorde, and therefore,
for the purpose of finding such solutions, per-instance algorithm selection techniques
(see, e.g., [8]) were inapplicable to the TSP.



Recently, however, an improvement in the state of the art in inexact TSP solving in
the form of a new evolutionary algorithm, EAX, has been reported [13], and from the
performance comparison against LKH, it appeared possible that per-instance selection
between those two solvers might yield further improvements.

In this work, we pursue this possibility and show, for the first time, that per-instance
algorithm selection techniques can be used to improve the state of the art in inexact TSP
solving. After providing some preliminary information about the TSP solvers, bench-
mark instances and algorithm selection techniques we use in our study in Section 2, we
report performance results for LKH and EAX that clearly indicate the potential benefit
of per-instance algorithm selection (Section 3). Next, we report the performance that
can be obtained from actual algorithm selectors, using broad sets of instance features
from the literature [6, 12, 15, 19] (Section 4). Finally, we demonstrate how an effective
selector can be constructed based on a small number of efficiently computable probing
features extracted from the initial phase of EAX runs (Section 5), before concluding
with some general observations and directions for future work.

2 Background and Experimental Setup

TSP Solvers. We consider two state-of-the art inexact TSP solvers in this work: LKH
[4] and EAX [13].

LKH is a stochastic local search algorithm based on the Lin-Kernighan procedure. It
uses an improved variant of the Lin-Kernighan algorithm, based on 5-exchange moves
in combination with a construction procedure loosely related to the nearest neighbour
heuristic. LKH has defined the state of the art in inexact TSP solving since it was first
introduced in 2000.

Besides the reference implementation of LKH, we used a modification of version
1.3, developed in the context of a study of LKH’s scaling behaviour [9].4 This modifica-
tion adds a simple dynamic restart mechanism to the original LKH algorithm, based on
the observation that the performance of the former suffered frequently from stagnation
of the underlying stochastic search process. We dub this variant LKH+restart.

EAX is a recently introduced evolutionary algorithm for inexact TSP solving. Its
key ingredient is a new edge assembly crossover procedure, which obtains high-quality
tours by combining edges from two parent tours with a small number of new, short
edges. EAX uses 2-opt local search to determine the initial population, as well as a
specific tabu search procedure for generating offspring from very high-quality parent
solutions. Furthermore, an entropy-based mechanism is used to preserve diversity in the
population of candidate solutions. A rather complex combination of termination criteria
is used to determine when a run of EAX is ended, at which point the best tour encoun-
tered during the run is returned. Nagata and Kobayashi [13] provide empirical evidence
that EAX often, but not always, outperforms LKH on several sets of commonly stud-
ied Euclidean TSP instances in terms of the solution qualities reached within similar or
shorter running times.

4 A similar modification can in principle be applied to the current version 2.0.3 of LKH, but as
we will see, the performance of version 1.3, for which the modification was made available to
us, is sufficient to obtain better performance than EAX in many cases.



We modified the official implementation of EAX to permit setting the random seed
(which had previously been fixed to one value) and to terminate when a given solution
quality or bound in running time is reached (or exceeded). These modifications were
necessary to facilitate our comparative performance analysis and did not compromise
performance. During initial experiments, we noticed that EAX often terminates prema-
turely. We therefore created two variants, which we studied in the following. The first,
simply dubbed EAX, disables the original termination criterion and ends a run only
when a given solution quality or bound in running time is reached (or exceeded). We
verified that single runs of this variant performed no worse than the original version of
EAX. Our second variant uses the original termination criterion to trigger a restart, by
initialising another run; this is done until a given solution quality or bound in running
time is reached (or exceeded). We dub this variant EAX+restart.

Benchmark instances. Consistent with other work in this area, we use four types of
benchmark instances.

Random uniform Euclidean (RUE) instances are obtained by placing n points uni-
formly at random in a square, with integer coordinates between 1 and 1 000 000; each
point corresponds to a city to be visited. Distances between these cities are defined as
Euclidean distances between the respective points, rounded to the nearest integer. We
generated instances with 1 000, 1 500, and 2 000 cities, 1 000 each. After filtering the
instances that no solver could solve within 1 CPU hour on our reference machine and
instances for which features could not be computed because the computation ran out of
memory, we were left with 999 instances with 1 000 cities, 1 000 with 1 500 cities, and
998 with 2 000 cities. The RUE instances used in our experiments were generated using
the portgen generator from the 8th DIMACS Implementation Challenge. Optimal
solution qualities for all RUE instances were obtained using Concorde [1].

TSPLIB is a widely used collection of TSP instances with different characteristics,
including instances from various applications of the TSP. In our experiments, we used
74 instances with edge types EUC 2D, CEIL 2D and ATT and sizes between 48 and
11 849. Again we excluded instances that no solver was able to solve within 1 CPU
hour on our reference machine and instances for which we were unable to compute
features.

Finally, we used two sets of instances from the TSP webpage at http://www.
math.uwaterloo.ca/tsp/index.html. The National instances are based on
the locations of cities within different countries, and we used 8 National instances with
734 to 9 882 cities. The VLSI instances stem from an application in VLSI circuit design,
and we used 27 VLSI instances with 662 to 2 924 cities. These instances are known to
be particularly hard for many TSP solvers, including Concorde and EAX.

We limited our study to instances for which the optimal solution is known, since
we were interested in the ability of our solvers to find optimal solutions and in the time
required for doing so. This is the most ambitious goal for any TSP solver, and even
though inexact solvers, such as the ones we consider here, cannot prove optimality,
they are typically able to find solutions whose optimality is later proven using other
methods much more effectively than the best exact solvers.



Automated algorithm selection. The per-instance algorithm selection problem [16]
involves selecting from a set of candidate algorithms the one expected to perform best
on a given problem instance. It is relevant where algorithm portfolios [3, 5] are em-
ployed – instead of tackling a set of problem instances with just a single solver, a set of
them is used with the best being selected for each instance.

Algorithm selection systems build performance models of the algorithms or the
portfolio they are contained in to forecast which algorithm to use in a particular context.
Usually, these models are induced using machine learning. Using the model predictions,
one or more algorithms from the portfolio are selected to be run sequentially or in
parallel.

Here, we consider the case where exactly one algorithm is selected for solving the
problem. One of the most prominent and successful systems that employs this approach
is SATzilla [20], which defined the state of the art in SAT solving for a number of years.
Since then, additional algorithm selection systems have been developed and proved
their worth in the annual SAT competition (e.g. CSHC [10], which has also been ap-
plied to MaxSAT). Other successful application areas have been constraint solving [14],
continuous black-box optimization [2, 11], mixed integer programming [21], and AI
planning [18].

The interested reader is referred to a recent survey [8] for additional information on
algorithm selection.

Construction and evaluation of algorithm selectors. In the following, we use the
LLAMA algorithm selection toolkit [7], version 0.7.2, to build algorithm selectors for
the TSP and consider a range of different approaches to algorithm selection used in the
literature. We build models that treat algorithm selection as a classification problem and
predict the algorithm to use. We furthermore build models that use regression to predict
the performance of the individual algorithms in the portfolio separately and choose the
algorithm with the best predicted performance. Finally, we consider models that, for
each pair of algorithms, use regression to predict the performance difference between
them. The solver with the largest performance improvement over all other algorithms is
chosen.

In addition to a range of algorithm selection models, we also consider a range of
different machine learning techniques. For classification, we use C4.5 decision trees
(J48), random forests (RF), and recursive partitioning trees (RPART). For regression,
we consider random forests (RF), support vector machines (KSVM), and multivariate
adaptive regression spline (MARS) models. All machine learning models were used
with their default parameters.

We generally consider the portfolio that contains all four solvers – LKH and EAX as
well as their respective restart variants. From our original set of instances, we selected
all that at least one of these solvers was able to find the optimal solution for within
the specified cutoff time. We also filter instances for which we were unable to compute
feature values because the computation ran out of memory or unsupported constructs in
the input. This leaves us with a total of 3 106 instances.

We use 10-fold cross-validation to determine the performance of the algorithm se-
lection models. The entire set of instances was randomly partitioned into 10 subsets of



approximately equal size. Of the 10 subsets, 9 were combined to form the training set
for the algorithm selection models, which were evaluated on the remaining subset. This
process was repeated 10 times for all possible combinations of training and test sets. At
the end of this process, each problem instance in the original set was used exactly once
to evaluate the performance of the algorithm selection models.

Execution environment and performance measurement. All experiments were run
on 24-core 2.5 GHz Intel XEON machines with 64 GB of RAM running CentOS 6.4 64
Bit. We measured execution times using the time command and limited the CPU time
of solvers with the runsolver tool [17] where necessary. We set the cutoff time to
3 600 CPU seconds. We ran each solver 10 times on an instance with different random
seeds and took the median of the results.

The mean PAR10 score over all instances is 2 062.145 for LKH, 422.477 for LKH+
restart, 11 462.98 for EAX, and 104.014 for EAX+restart. The PAR10 score is the pe-
nalized average runtime. That is, if the solver chosen for the respective instance was
able to solve it within the cutoff time of 1 hour, the actual runtime is the score. Other-
wise, we penalise the solver by multiplying the cutoff time by a factor of 10.

3 Potential for Portfolios

Figure 1 shows scatter plots of the CPU times on our benchmark sets of TSP instances
for the four inexact TSP solvers we considered in our study. It is obvious that there is
substantial potential for algorithm selection – the solvers show very different behaviour
on different sets of instances. There are many instances with large performance differ-
ences; in particular, many instances are easily handled by one solver, while the other
times out after an hour.

The RUE instances (triangles), which comprise the vast majority of our instance
set, are clustered in the centers of the plots – most of them can be solved by all solvers,
and often there are only small performance differences. Nevertheless, there are a few
instances that at least one of the solvers cannot solve within the time limit of 1 CPU
hour.

The TSPLib instances are more varied. While most of them are easily solvable
within a few seconds by all solvers, a few are very hard for one solver, but easily solv-
able by another. The VLSI and National instances are in between very easy and very
hard.

The left hand side of Figure 1 shows that there is a large set of instances that EAX is
unable to solve within the time limit. However, the right hand side, which compares the
restart variants of the solvers, shows that EAX+restart is able to solve the vast majority
of these instances within the time limit. This suggests that EAX+restart effectively im-
proves over plain EAX; further analysis of the performance correlation between the two
variants indicates potential for automated selection between those. Similar observations
apply to LKH vs LKH+restart.

While in general solving times tend to increase with instances size, the solver be-
haviour is not completely consistent with the size of the problem instances. For exam-
ple, there is a large number of relatively small instances on which EAX times out after
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Fig. 1. Performance differences for EAX and LKH (left) and the respective restart variants (right).
Each point represents a problem instance. The axes show the CPU time consumed by the respec-
tive solver as the median over 10 runs on a log scale. Both solvers exhibit the same performance
for points on the diagonal line. The points at the top and right of the plots represent instances on
which one of the solvers timed out, the instances in the top right corner could not be solved by
either of the solvers.

an hour. Similarly, there are small instances where LKH exhibits the same behaviour.
This suggests, consistent with earlier work on performance modelling of TSP solver
performance (e.g. [6]) that more information is required to forecast solver behaviour.

4 Building Algorithm Selectors using Features from the Literature

There are several approaches in the literature that attempt to characterise TSP instances
by computing features. We focus on the two presented in [12]5 and [6]6, as they com-
prise a large set of syntactic and dynamic features and consider them in isolation as well
as combined with each other. As mentioned above, the cost of computing the feature
values can play a major part in the success of an algorithm selection system. We there-
fore split the feature set described in [6] further into relatively cheap features and the
full set of features that in addition comprises more expensive characteristics and ones
that are computed through probing.

We denote the feature set described in [12] TSPmeta and the one from [6] UBC.
Based on these, we use the following four sets of features in our experiments.

UBC (cheap) The feature set from [6] without the more expensive features, in particu-
lar, the local search, branch and cut, and clustering distance features (13 features).
The mean time of computing this set of features was 0.975 seconds per instance,
with the median at 0.97 seconds (standard deviation 0.423).

UBC The full feature set from [6] (50 features). The mean time of computing this
set of features was 20.71 seconds per instance, with the median at 16.47 seconds
(standard deviation 46.355).

5 http://cran.r-project.org/web/packages/tspmeta/index.html
6 http://www.cs.ubc.ca/labs/beta/Projects/EPMs/TSP_features_
UBC2012.tar.gz



UBC (cheap) UBC TSPmeta UBC ∪ TSPmeta

virtual best 18.521
single best 104.014

classification J48 3077.424 3725.066 3773.809 3542.362
RF 2676.616 2176.886 2312.164 2252.694

RPART 1931.505 1580.833 1628.554 1612.98

regression RF 119.964 126.398 151.198 158.14
MARS 95.876 223.232 204.229 204.974
KSVM 295.762 911.488 3906.038 2140.112

regression pairs RF 144.482 139.348 151.503 170.332
MARS 95.076 138.866 208.207 205.855
KSVM 345.475 850.063 1733.452 1948.489

Table 1. Summary of algorithm selector results using sets of features from the literature. The
numbers represent mean PAR10 scores, including the cost of feature computation, over the entire
set of instances and rounded to three digits. We show the scores for the virtual best and single best
solver for comparison. The scores for the models that are better than the single best algorithm are
shown in bold face.

TSPmeta The full feature set from [12] (64 features). The mean time of computing this
set of features was 33.61 seconds per instance, with the median at 28.51 seconds
(standard deviation 39.469).

UBC ∪ TSPmeta The union of UBC and TSPmeta (114 features). Some of the fea-
tures in the constituent sets contain the same information.

An additional set of features based on k-nearest neighbour analysis has been intro-
duced very recently in [15]. These features will be included in future studies.

4.1 Results

The results we achieve with the feature sets described above are detailed in Table 1 (we
report PAR10 scores over the union of our four benchmark sets).

We are able to improve upon running the single best solver (EAX+restart) only in
two cases overall. All other selectors are (sometimes much) worse than simply choosing
the single best solver statically. In particular, the classification-based models exhibit
very bad performance. The regression-based models perform much better, in particular,
the random forest and MARS models.

To what extent these results are caused by the cost of computing the features be-
comes clear when examining the results that ignore this cost, presented in Table 2.
While the differences for the classification-based models are relatively small, there are
major changes for the random forest and MARS regression models.

The cost of computing the probing features can be substantial; this can be seen, e.g.,
when comparing the performance of the random forest regression model with the TSP-
meta feature set without costs (118.565) with the performance including the overhead



UBC (cheap) UBC TSPmeta UBC ∪ TSPmeta

virtual best 18.521
single best 104.014

classification J48 3076.546 3696.603 3734.9 3495.625
RF 2675.727 2148.116 2271.907 2194.633

RPART 1930.594 1551.948 1597.611 1553.285

regression RF 118.998 106.404 118.565 105.995
MARS 94.907 192.358 171.744 152.899
KSVM 294.803 892.429 3867.598 2069.934

regression pairs RF 143.519 119.858 118.87 118.187
MARS 94.104 107.925 175.715 154
KSVM 344.517 831.006 1702.978 1877.953

Table 2. Summary of algorithm selector results using features from the literature. The numbers
represent PAR10 scores over the entire set of instances without taking the cost for feature com-
putation into account and rounded to three digits. We show the scores for the virtual best and
single best solver for comparison. The scores for the models that are better than the single best
algorithm are shown in bold face.

(151.198). The average cost of computing this feature set is almost twice as large as the
average PAR10 score of the virtual best solver.

Figure 2 (right) shows the performance of the best overall model, MARS regression
on pairs of solvers trained using the UBC (cheap) feature set, compared to the single
best solver. There is a large number of instances where the solver the selector chooses is
better than the single best (points below the diagonal); in particular, there are 3 instances
where the single best solver times out (right margin of plot), while the selector chooses
a solver that does not. There are, however, a significant number of instances where the
choice made by the selector is incorrect, and EAX+restart exhibits better performance
than the chosen solver. In particular, there are two instances that are easy for the sin-
gle best solver, while the solver chosen by the selector times out (top margin of plot).
Unsurprisingly, as can be seen when comparing the left and right plots in Figure 2, the
cost of feature computation mainly affects selector performance on easy instances.

Additionally, we performed forward feature selection, where we start with an empty
set and repeatedly add the feature that gives most additional information, based on
entropy and correlation on the full feature set UBC ∪ TSPmeta to determine the features
that are most important for determining the solver to run. No cost-sensitive feature
selection strategy was applied (we plan to improve on this approach in future work).
The resulting set included eight features from [6] (the mean and standard deviation
cluster distances, the average tour cost from the construction heuristic, the skew of the
probability of edges in local minima, the time required for the local search probing
feature computation, the maximum depth, the median and standard deviation of the
distances of the minimum spanning tree) and one from [12] (the fraction of nodes on
the convex hull).
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Fig. 2. Algorithm selector performance for the best model trained with features from the literature
without and with taking feature costs into account (left and right plot, respectively) – in both
cases, the best model was MARS regression on pairs of solvers with the UBC (cheap) feature
set. The x-axis shows the log PAR10 score of the single best solver, the y-axis the log PAR10
score of the selector. Each point represents a TSP instance. Points on the diagonal indicate that
the selector chose the single best solver, below the diagonal that the selector chose a better solver
than the single best.

We also performed feature selection on the features used by the best overall model,
MARS on pairs of solvers with the UBC (cheap) feature set. Just a single feature was
chosen, the average length of the minimum spanning tree.

While feature selection was able to improve the performance slightly in some cases,
selectors trained on the reduced feature set showed worse performance in other cases.
There is significant overlap in the type of features computed in the UBC and TSPmeta
feature sets, which may explain the inconsistent results we achieved with feature selec-
tion. All results reported in this paper are without feature selection, as feature selection
does not significantly and consistently improve the results and increases the conceptual
complexity of selector construction.

5 Building Algorithm Selectors using EAX Probing Features

In the previous sections, we have shown that there are significant complementarities in
performance between the four solvers we consider and therefore significant potential
for algorithm selection to improve the current state of the art in TSP solving. Using
features described in the literature, we can already achieve a significant performance
improvement over the single best solver on our set of instances. In this section, we
investigate whether we can improve on this by using a different, novel set of features.

As explained earlier, there is a trade-off between the cost of computing the features
characterising a TSP instance and the information obtained through them. In particular,
computing the features that cannot be determined directly from the description of the
instance itself is expensive, but does help learn better algorithm selection models.

In this section, we propose a new set of features that allows us to investigate the
trade-off of cost of feature computation vs. information in a much more fine-grained



and principled manner. We harness one of the solvers from our portfolio and analyse
its progress when run for a small amount of time. We can control the amount of time
directly – the longer the solver is run, the more information we get, but the more ex-
pensive the feature computation becomes. This information is then used to derive novel
features.

Our single best solver, EAX+restart, provides the user with a trace of its execution
as it progresses through the different generations. For each generation, the evolutionary
algorithm outputs the best and average tour length found over the individuals of the
current population. This gives an indication of how the solver progresses. By comparing
the tour lengths of successive generations to the initial one, we get information on how
quickly the solver is able to improve on initial solutions.

We consider the information obtained during the first n generations. Each best and
average tour length is normalised by the best and average tour lengths of the initial
population to obtain the improvement over these. We compute the minimum, maximum,
mean, and median of both best and average improvements over the n generations. As the
solving trajectory varies between different executions, we compute the median values
of these numbers over m runs of EAX+restart with different random seeds.

This feature computation can be seen as a pre-solving step, during which we are
running the actual algorithm used to find a solution. If the solver finds the solution dur-
ing the first n generations, no further work needs to be done. Presolving is an effective
means of quickly solving easy instances without incurring the overhead of feature com-
putation costs. It is used with great success in the SATzilla system [20] for example.

5.1 Determining the Number of Generations and Probing Runs

We first investigated the impact of the parameters n and m on selector performance.
The results of these preliminary experiments were somewhat inconclusive, but led us
to choose n = 10 generations and m = 1 algorithm run for computing our probing
features. This keeps the cost of feature computation low, while still providing us with
valuable information that can be used effectively to decide which solver to use.

The results vary not only with n and m, but also between different probing runs. As
our probing algorithm is stochastic, we obtain different feature values for different ran-
dom seeds. The resulting performance differences can be quite high, especially for easy
instances that are solved almost instantaneously if the solver starts its search process
with a good set of initial tours. This means that not only the computed feature values,
but also the cost of feature computation is different for different runs. This introduces
additional stochasticity and noise into our evaluation.

We therefore average feature costs and values over 10 independent algorithm runs
with different random seeds, and the results reported below are averages over those runs.
In each of these runs, we extract the features as described above and build and evaluate
the models. Averaging the results in this manner makes our conclusions statistically
more robust.

The mean cost of computing this set of features (mean over all instances that are not
solved during feature computation, and median over 10 independent runs per instance)
is 2.811 seconds, and the mean number of presolved instances over all independent runs
is 26.6, all from TSPLIB.



5.2 Results

In the subsequent evaluation, we focus on the approaches that we have identified as the
most promising in the previous experiments, namely random forest and MARS models
for regression and regression on pairs of algorithms. Table 3 shows the results we were
able to achieve with selectors using only our new features. The overall best model is
random forest regression and achieves better performance than the single best solver on
average.

We note that the performance of the virtual best solver is very slightly worse than
that observed in our experiments from Section 4, although the difference is less than
the three significant digits we round to. This happens, because for the instances that are
solved during feature computation, we take the runtime of the solver used to compute
those features, even though a different solver may be faster.

The selector performance obtained using our new models is worse than the single
best solver when taking into account the full cost of feature computation; however, be-
cause of the nature of our new probing features, this is not necessary: If the solver used
for the feature computation is chosen as the solver to be run on the given TSP instance,
the features are obtained at no additional cost, by simply continuing the probing run.
The performance results for this ‘accelerated’ feature computation are shown in the
third column of Table 3.

On average over all probing runs with different random seeds, the selectors trained
using the new features perform worse than the selectors trained using features from
the literature. However, there are clear indications for potential to obtain much better
performance. In Table 3, we report, in parentheses, the first quartiles of the distributions
of mean PAR10 scores over the 10 independent runs per TSP instance. According to
these results, the MARS models for pairs of solvers, using our new probing features,
can yield better performance than any of the models we have studied previously, using
instance features from the literature.

The performance variation between the 10 independent runs underlying the results
in Table 3 is quite high, considering the relatively small difference in performance to
the single best algorithm; for our accelerated random forest models and our acceler-
ated MARS models for pairs of solvers, we observe standard deviations of 21.767 and
28.085, respectively. The best performance achieved over the 10 independent runs is
up to ≈30% better than that of the single best solver. While these results indicate the
potential inherent in our new probing features, statistically robust ways to exploit this
potential will be investigated in future work.

Figure 3 illustrates the performance of our new algorithm selectors, based on EAX
probing features, in more detail. In contrast to the situation when using features from the
literature, illustrated in Figure 2, we are now able to match the performance of the single
best solver for the vast majority of easy instances. This is in part due to the fact that the
very easy instances are now solved during feature computation. Furthermore, there are
no more cases where our selector chooses a solver that times out while the single best
solver does not. On the contrary, there are three instances where the single best solver
times out, but our selector chooses a solver that does not. This fact further illustrates
the potential of our new probing features, which enable us to make better predictions,
especially in extreme cases, where incorrect decisions are particularly detrimental.



without costs with costs accelerated

virtual best 18.521
single best 104.014

regression RF 103.415 (95.041) 106.238 (97.859) 103.833 (95.461)
MARS 126.204 (116.929) 129.017 (119.733) 126.529 (117.235)

regression pairs RF 128.739 (119.761) 131.561 (122.584) 129.282 (120.273)
MARS 107.13 (85.909) 109.949 (88.735) 107.506 (86.303)

Table 3. Summary of algorithm selector results using our new EAX probing features. The num-
bers represent the mean of the mean PAR10 scores over the entire set of instances (including the
ones solved during feature computation) and 10 independent runs per instance, rounded to three
digits. The numbers in parentheses represent the first quartiles over ten independent runs. The
‘accelerated’ column denotes the average PAR10 score where the cost of computing the features
was added only if the chosen solver was different from the one used for computing those features.
We show the scores for the virtual best and single best solver for comparison. The scores for the
models that are better than the single best algorithm are shown in bold face.

When comparing the left- and right-hand plots in Figure 3, we see the impact of
the feature computation costs. There is no difference in the top and right-hand parts of
the plots, as the instances in these areas take longer to solve, and the time for feature
computation is insignificant. In the centre part, however, a small shift of points towards
the top of the plot can be observed – there is no shift to the right, as the single best
solver can be determined statically and does not require features. Easy instances are not
affected as much, as the solver used to compute the probing features is also chosen as
the solver to continue solving.

Since our use of EAX probing features effectively combines feature computation
with presolving, we see considerable benefits over other algorithm selection approaches
for relatively easy instances. With further optimised feature computation and presolving
strategies, it should be possible for the selector to focus on improving performance on
difficult instances and thus to obtain additional overall performance improvements.

5.3 Combining with Features from the Literature

As we have seen above, our new features have the potential to give rise to better se-
lectors than those obtained by using only features from the literature. For our final set
of experiments, we combined the feature sets from the literature with our new EAX
probing features to assess whether this could result in even better selectors.

Table 4 shows the performance results for selectors using the combined set of fea-
tures. Overall, when accounting for the cost of determining the features, performance
is worse than for the individual sets in isolation. This is mostly caused by the high cost
of feature computation. However, even when ignoring this cost, the selectors do not
perform better than before. In particular, while the best selector achieved performance
similar to the single best algorithm on average, it appears to be unable to capitalise on
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Fig. 3. Algorithm selector performance for the best model trained with the new EAX probing
features, random forest regression, without (left) and with (right) feature cost, where in the latter
case, the ‘accelerated’ feature computation method was used. The x- and y- axes show the log
PAR10 scores of the single best solver and the selector, respectively. Each point represents one
TSP instance. Points on the diagonal correspond to cases where the selector chooses the single
best solver, and points below the diagonal to cases where the selector chooses a solver with even
better performance for that instance.

the additional information contained in the larger feature set. We believe that the redun-
dant information contained in the set of all features has a detrimental effect on selector
performance.

6 Conclusions

The Travelling Salesman Problem is one of the most iconic NP-hard optimisation prob-
lems. It has been extensively studied over the years, and many approaches for solving
it have been developed. Until recently, a single solver, LKH, has defined the state of
the art for inexact TSP solving. With the recent introduction of a new state-of-the-art
inexact TSP algorithm, EAX, this picture has changed.

In this work, we have extensively studied the empirical performance of LKH, EAX,
and improved variants of these base solvers on a large set of TSP instances ranging
from trivial to hard. We have demonstrated the huge potential for algorithm selection
in this context. We then successfully applied algorithm selection techniques to improve
the state of the art in inexact TSP solving.

On the large set of instances we consider in this paper, we have computed features
defined in the literature. We empirically investigated how informative these features are
with respect to choosing the best solver for a specific instance. The initial results are
very encouraging. Even with features that are relatively cheap to compute, we are able
to build algorithm selection models that outperform the current state of the art – the
single best solver over the entire set of instances, EAX+restart.

Motivated by this observation, we proposed a new set of features based on informa-
tion gleaned from the execution trace of one of the solvers in our portfolio. Controlling
the trade-off between the amount of information and the cost of computing it, we were



without costs with costs accelerated

virtual best 18.521
single best 104.014

regression RF 103.894 (95.928) 163.162 (161.727) 160.761 (159.32)
MARS 216.892 (190.686) 277.835 (260.146) 275.732 (257.834)

regression pairs RF 125.729 (119.585) 180.626 (174.478) 178.291 (172.132)
MARS 159.126 (145.451) 221.648 (210.952) 219.412 (208.644)

Table 4. Summary of algorithm selector results using the combined set of all features from the
literature and our own. The numbers represent the mean of the mean PAR10 scores over the entire
set of instances (including the ones solved during feature computation) and all 10 random seeds
rounded to three digits. The numbers in parentheses are the first quartiles over 10 independent
runs. The ‘accelerated’ column denotes the average PAR10 score where the full cost of computing
the features was added only if the chosen solver was different from the one used for computing
those features. If the same solver was chosen, only the cost for the features not derived during
the probing run was added. We show the scores for the virtual best and single best solver for
comparison. The scores for the models that are better than the single best algorithm are shown in
bold face.

able to show that the quality of the selector can improve significantly over selectors
that use existing features. Our approach to feature computation combines the extraction
of instance characteristics with presolving, which has the additional benefit that trivial
instances are solved during this phase and the selector does not have to consider them.

In future work, we will further investigate our new EAX probing features, with the
goal of obtaining additional, statistically robust performance improvements. We will
also endeavour to add additional features and investigate the impact of cost-sensitive
feature selection methods.
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