
Quantifying Algorithmic Improvements over Time

Lars Kotthoff1, Alexandre Fréchette2, Tomasz Michalak3,
Talal Rahwan4, Holger H. Hoos5,6, Kevin Leyton-Brown6

1University of Wyoming, 2D-Wave, 3University of Warsaw,
4Masdar Institute of Science and Technology, 5Universiteit Leiden, 6University of British Columbia

Abstract
Assessing the progress made in AI and contribu-
tions to the state of the art is of major concern to
the community. Recently, Fréchette et al. [2016]
advocated performing such analysis via the Shapley
value, a concept from coalitional game theory. In
this paper, we argue that while this general idea is
sound, it unfairly penalizes older algorithms that
advanced the state of the art when introduced, but
were then outperformed by modern counterparts.
Driven by this observation, we introduce the tem-
poral Shapley value, a measure that addresses this
problem while maintaining the desirable properties
of the (classical) Shapley value. We use the tempo-
ral Shapley value to analyze the progress made in
(i) the different versions of the Quicksort algorithm;
(ii) the annual SAT competitions 2007–2014; (iii)
an annual competition of Constraint Programming,
namely the MiniZinc challenge 2014–2016. Our
analysis reveals novel insights into the development
made in these important areas of research over time.

1 Introduction
Heuristic algorithms have played a key role in advancing many
areas of AI by providing a practical way to identify reasonable
(albeit not necessarily optimal) solutions to NP-hard problems.
Such algorithms typically exploit the structure of a particular
problem instance in order to cut down large areas of the search
space and quickly narrow down the set of possible solutions.
Such algorithms often exhibit significant performance varia-
tion across problem instances, with different algorithms per-
forming well on different instances. This variation can be ex-
ploited by using algorithm portfolios [Huberman et al., 1997;
Gomes and Selman, 2001; Leyton-Brown et al., 2003]. Such
portfolios have proven successful across different areas of AI,
including SAT solving [Xu et al., 2008], AI planning [Helmert
et al., 2011] and Answer Set Programming [Gebser et al.,
2011]; see also the survey by Kotthoff [2014].

Algorithm portfolios are also useful in a second sense: as
a context in which to study the contributions of various al-
gorithms to the state of the art in solving a given problem.
To see why this is important, consider the alternative: assess-
ing algorithms based on their standalone performance. More

formally (following the notation introduced by Fréchette et
al. 2016), let X be a fixed set of instances of a given problem,
let A = {1, . . . , α} be a portfolio of algorithms that solve
this problem, let perf(A) be a measure of the performance
achieved by A, and let contr(i, A) be the “contribution” of
algorithm i ∈ A to the performance of A. Then, evaluating
each algorithm based solely on its standalone performance
would be equivalent to setting: contr(i, A) := perf({i}). The
problem with this measure of contribution is that it fails to
capture important qualitative differences in algorithm perfor-
mance. To see why this is the case, consider instances x1,
x2, x3 and algorithms 1, 2, 3, 4, where 1 solves x1 and x2

within a given running time cutoff; 2 solves x1; 3 solves x2;
and 4 solves x3. Here, algorithm 1 has the best standalone
performance; the other three algorithms are tied. However, by
focusing solely on standalone performance, we miss the fact
that algorithm 4 is special: it is the only one that solves x3.

Xu et al. [2012] proposed an alternative: that each algo-
rithm, i, be evaluated in terms of its marginal contribution
to portfolio A, or the improvement it achieves beyond the
performance of the portfolio excluding i. More formally, this
proposal defined contr(i, A) := perf(A) − perf(A \ {i}).
This measure is able to capture the distinct performance of
algorithm 4 in our example: indeed, this is the only algorithm
with a positive marginal contribution. Nevertheless, this mea-
sure, too, has a major shortcoming: algorithms with correlated
strengths receive lower scores than they deserve. In our exam-
ple, although algorithms 1, 2 and 3 are collectively important
(they jointly solve two of the three instances, which cannot be
solved in any other way), the marginal contribution of each of
these algorithms to the portfolio is zero (given any two of 1, 2,
3, the third is unhelpful). Furthermore, marginal contribution
can fail to recognize significant performance differences, e.g.,
1 solves twice as many instances as 2 and 3, yet they all have
the same marginal contribution.

Fréchette et al. [2016] proposed a measure that addresses
the aforementioned limitations. In particular, the authors
model the portfolio as a coalitional game and calculate the
Shapley value to determine the contribution of each algo-
rithm. In a nutshell, the Shapley value for each algorithm
is a weighted average of its marginal contributions over all
subsets of the given portfolio A. In our example, the Shapley
values (counting numbers of instances solved) for algorithms
1, 2, 3 and 4 are 1, 0.5, 0.5 and 1, respectively. There are

good theoretical arguments for this measure and also intuitive
reasons in its favour, as seen in our example, where it identifies
algorithm 1 as being twice as important as 2 and 3; algorithms
2 and 3 receive identical scores; and 4 receives a higher score
than 2 and 3, even though it, too, can only solve one instance,
but is the only algorithm to solve that instance.

More formally, a coalitional game is defined by a pair (A, v),
where A = {1, . . . , α} is a set of α players and v is a charac-
teristic function 2A → R that maps each coalition C ⊆ A to
a real number, v(C), called the value of coalition C, which
represents the reward the players in C can achieve by working
together. A game will often be denoted by just v instead of
(A, v) whenever A is clear from the context. The coalition of
all players C = A is called the grand coalition. Denote the set
of all games with players A as V(A).

A key concern for dividing a coalition’s value amongst its
players is fairness—a coalition’s value should be distributed
amongst the players in a manner reflecting the value that each
player contributed. The canonical answer (or “solution con-
cept”) in this case is the Shapley value [Shapley, 1953]. It
is based on the idea that, when players join a coalition in a
fixed order, the contribution of any given player is taken as
the increase in value that this player creates when joining the
coalition, i.e., its “marginal contribution”. The Shapley value
is then defined as the average of such contributions over all
possible joining orders. More formally, let Π(A) denote the
set of all permutations of A. For any π ∈ Π(A), let Cπi denote
the coalition consisting of all predecessors of i in π. That
is, Cπi = {j ∈ A : π(j) < π(i)}, where π(i) denotes the
position of i in π. Then, noting that v(Cπi ∪ {i}) − v(Cπi)
is the marginal contribution of player i to coalition Cπi , the
Shapley value of player i ∈ A in game v is:

φi(A, v) :=
1

|A|!
∑

π∈Π(A)

v(Cπi ∪ {i})− v(Cπi). (1)

Fréchette et al. [2016] modeled algorithm portfolios as coali-
tional games by assuming that each algorithm, or “solver”,
corresponds to a distinct player, and defining v(C) = perf(C).
Then, the Shapley value for such a game becomes a “fair”
measure of each algorithm’s to the portfolio. However, the ar-
gument for scoring algorithms by their Shapley values breaks
down when we wish to take into account the temporal order in
which algorithms were invented, i.e., when we want to eval-
uate algorithms over time. To see why this is the case, let us
revisit the example mentioned above. Imagine that algorithms
2 and 3 were published in 2015, 1 in 2016, and 4 in 2017.
Then, by the time algorithm 1 was developed, we were already
able to solve instances x1 and x2. From this perspective, algo-
rithm 1 has not improved the state of the art, and the full credit
for solving x1 and x2 should be attributed to algorithms 2 and
3. In contrast, even though 4 was published after the others, it
advanced the state of the art by being the first to solve x3.

This is the main idea behind the temporal Shapley value
introduced in this paper: we specify temporal constraints be-
tween algorithms (reflecting the times at which they were
introduced) and then average over all joining orders consistent
with these constraints. In our example, and given the temporal
constraints just described, we assign to algorithms 1, 2, 3 and

4 the scores 0, 1, 1, and 1, respectively. We axiomatize the
new measure and prove that it maintains the Shapley value’s
desirable properties. We then show its usefulness in practice,
analyzing the evolution of Quicksort pivoting strategies 1961–
2009; entries in the SAT competitions 2007–2014; and entries
in the MiniZinc competition for constraint solvers 2014–2016.

The temporal Shapley value is not limited to these case stud-
ies; indeed, it can be applied to any setting where performance
values for each of a set of algorithms are available, for any
performance measure. Computing it is efficient and takes a
few seconds on a standard laptop for our case studies.

2 Coalitional Games in Temporal Settings
One of the assumptions underlying the Shapley value is that all
joining orders are equally plausible. However, in the context
of algorithms that were developed over time, this assumption
does not hold. Instead, it would make more sense to define
a partial order that constrains the joining orders such that an
algorithm i is required to join before another j if the time of
development of i precedes that of j (e.g., if i was introduced
in an earlier iteration of an annual competition). This is par-
ticularly important in AI as new algorithms are often derived
from older ones, e.g., by tweaking key features or adding
new heuristics. Often, such parent and child algorithms are
strongly correlated, with the child typically achieving a moder-
ately better performance than the parent. If such a child-parent
pair were evaluated together using the Shapley value, each of
them would receive roughly half of the credit that either of
them would have received if the other was absent. Moreover,
the child would receive more credit, because adding the child
to a coalition that contains the parent has a greater impact
than vice versa. If we want to score algorithms only accord-
ing to their overall usefulness, this assessment is reasonable:
the child is indeed more effective than the parent. If, on the
other hand, we want to apportion credit for beneficial ideas,
it seems strange to neglect the fact that the child was derived
from the parent. Importantly, this argument does not only hold
for child-parent pairs (where one algorithm is an extension
or improvement of the other), but for any pair of algorithms,
as long as we are interested in attributing credit to the first
algorithm that was able to solve certain problem instances.

We are thus interested in allowing only joining orders that
reflect the time each algorithm was published. To formalize
this idea, we define cooperative games with this restriction.
Let T (A) denote a partition of A into q equivalence classes
T 1, . . . , T q (i.e., we assign the algorithms to q time periods,
treating algorithms within each time period as incomparable).
Let Q : A → {1, . . . , q} denote an inverse function that
maps from an algorithm to the index of its equivalence class.
Define a precedence relation � between algorithms, where
∀i, j ∈ A: i � j iff Q(i) �Q(j). Let P(A) denote the set of
precedence relations that can be induced in this way (i.e., that
are consistent with some partitioning of A and some ordering
of the equivalence classes). Then, A and �∈ P(A) induce a
strict partially ordered set (or poset) of elements of A, which
we denote as A�. A set of algorithms C ∈ 2A is downward
closed if ∀i ∈ C: i � j implies that j ∈ C. Given a poset A�,
let C(A�) denote the set of downward closed sets of elements

Novelty

Novelty++ G2wSAT

GNovelty+2 AdaptG2wSAT

TNM MarchHI

MphaseSAT SATtime EagleUP MarchRW Sparrow

Figure 1: Precedence structure for the poset in our example. Nodes
represent elements, edges represent the precedence relations between
them; relations that can be deduced from transitivity are omitted.

of A. Finally, let Π�(A) be the set of permutations of A for
which every prefix is an element of C(A�).

As an example, consider the following set of SAT solvers:
A = {Novelty, Novelty++, G2wSAT, GNovelty+2,
AdaptG2wSAT, TNM, MarchHI, MphaseSAT, SATtime,
EagleUP, MarchRW, Sparrow}. These were introduced
in the years 1997, 2005, 2005, 2007, 2007, 2009, 2009, 2011,
2011, 2011, 2011, and 2011, respectively. We define T (A)
by creating an equivalence class corresponding to each of the
five years, ordered by year, and assigning each solver to the
appropriate class. Here, we have j � i iff algorithm j was
introduced after algorithm i. Figure 1 shows the precedence
structure for the corresponding poset. Elements of C(A�)
include any number of elements from any given equivalence
class (rows in the diagram) and all elements of every prior (in
the diagram, lower) equivalence class.

With this notation in place, we can now define temporal
coalitional games.

Definition 1. A temporal coalitional game is a triple (A,�,
v�), where A is the set of players, �∈ P(A) is a precedence
relation, and v� : C(A�)→ R is the characteristic function
defined on downward closed sets of players, with v�(∅) = 0.

We will write v� instead of (A,�, v�) when A� and � are
clear from context. Let V(A�) denote the set of all temporal
coalitional games defined on A�.

Temporal coalitional games are a special case of coalitional
games under precedence constraints, where any precedence
relations are admissible [Faigle and Kern, 1992]. It is useful
to define the special case because it allows us to define and
analyze a restricted version of the Shapley value that exploits
the structure that holds here.

In this section, we define a solution concept φ� that asso-
ciates a temporal coalitional game (A,�, v�) with a vector in
Rα. We desire that φ� should be uniquely determined by a
set of axioms that is as close as possible to Shapley’s original
set (namely Additivity, Efficiency, Null Player, and Symmetry;
see Appendix A.2), and that for a trivial precedence relation in
which all algorithms are incomparable (e.g., were introduced
in the same year), φ� should reduce to the Shapley value.

We are able to use essentially the same Additivity and Effi-
ciency axioms as for classical coalitional games.

Axiom 1′ (Additivity). For any v�, w� ∈ V(A�) and C ∈
C(A�), let [v� + w�](C) denote v�(C) + w�(C). Then
φ�(A,�, v�) + φ�(A,�, w�) = φ�(A,�, [v�+ w�]).

Axiom 2′ (Efficiency). For any v� ∈ V(A�) :∑
i∈A φ

�
i (A,�, v�) = v�(A�).

The Null Player and Symmetry axioms need to be modified
for the temporal setting. First, the Null Player axiom must
account for the restrictions on the set of feasible coalitions.
Axiom 3′ (Null Player). For any v� ∈ V(A�) and i ∈ A, if
v�(C) − v�(C \ {i}) = 0 for every C ∈ C(A�) such that
i ∈ C and C \ {i} ∈ C(A�), then φ�i (v�) = 0.

The Symmetry axiom must consider that solvers belonging
to different equivalence classes are asymmetric by definition;
only solvers belonging to the same equivalence class can be
required to be symmetric.
Axiom 4′ (Symmetry). For any two players i, j ∈ A for
which Q(i) = Q(j) = p, φ�(A,�, fp(v�)) = fp(φ�)(A,�
, v�) for every v� ∈ V(A�) and every bijection fp : A→ A
for which for any i ∈ A, i /∈ T p implies that fp(i) = i.

We now turn to our main theoretical result: that there exists
a unique φ� : V(A�)→ Rα (which we will call the temporal
Shapley value) satisfying our axioms, defined as:

φ�i (A,�, v�) =
1

|Π�(A)|
∑

π∈Π�(A)

(
v�(Cπi ∪ {i})− v�(Cπi)

)
.

(2)
Lemma 1. Equation 2 can be rewritten as

φ�i (A,�, v�) =
∑

Cp⊆Tp\{i}

|Cp|!(|T p \ Cp| − 1)!

|T p|!
MC i(C

p),

(3)
where p = Q(i) and

MC i(C
p) = v�

(
p−1⋃
k=1

T k∪Cp∪{i}

)
− v�

(
p−1⋃
k=1

T k∪Cp
)
.

Proof. See Appendix A.3.

This lemma makes it clear that the temporal Shapley value
divides the credit amongst a set of algorithms introduced in
the same year in exactly the same proportion as the classical
Shapley value would (compare Equation 3 with Equation 7 in
Appendix A.2).

Every temporal coalitional game has a characteristic func-
tion that is a linear combination of simple characteristic
functions (SCFs), where each SCF is identified with some
downward-closed set C and asks whether the given coali-
tion covers C. Formally, an SCF is defined based on a given
C ∈ C(A�),C 6= ∅, and then evaluates to the following values
given a coalition D ∈ C(A�):

σC(D) =

{
1 if D ⊇ C
0 otherwise.

We will now show that the simple games defined above
form a basis of V(A�).
Lemma 2. For every v� ∈ V(A�), the game v� is equal to:

q∑
p=1

∑
C⊆Tp

C 6=∅

∑
D⊆C

(−1)|C|−|D|v�

(
p−1⋃
r=1

T r∪D

)σ⋃p−1
r=1 T

r∪C .

Proof. See Appendix A.4.

Theorem 1. The temporal Shapley value is the unique solu-
tion concept satisfying Axioms 1′, 2′, 3′, and 4′.

Proof. Consider a temporal game whose characteristic func-
tion is an SCF of the form v� = σE for some E ∈ C(A�),
where E =

⋃p−1
k=1 T

k ∪ Ep. From the Efficiency and Null
Player axioms, we know that φ�i (σE) = 0 for all i ∈ A \E′,
and

∑
i∈Ep φ�i (σE) = 1. Furthermore, from the Symmetry

axiom, we conclude that:

φ�i (σE) =

{
0 if i ∈ A \ Ep

1
|Ep| if i ∈ Ep. (4)

By the Additivity axiom, Equation 4 extends to the space of
all games uniquely via Lemma 2, yielding Equation 3.

For the other direction of the proof, we have just seen that
Equation 3 for φ� satisfies Additivity, Efficiency, and Sym-
metry by construction. The Null Player axiom is also clearly
satisfied—zero marginal contributions on the right hand side
imply φ�i (v�) = 0.

The temporal Shapley value can be classified as a special
case of a general family of solution concepts called quasi-
values [Monderer and Samet, 2002]. For a probability mea-
sure δ on Π(A), a quasivalue qδ assigns to i ∈ A the payoff
qδi =

∑
π∈Π(A) δ(π) (v(Cπi ∪ {i})− v(Cπi)) . The Shapley

value is the quasivalue for the uniform distribution over join-
ing orders, δ(π) = 1/(α!) for all π ∈ Π(A); see Equation 1.
The temporal Shapley value is the quasivalue in which δ is uni-
form over joining orders restricted to the elements of Π�(A).

Fréchette et al. [2016] showed that, for characteristic func-
tions that model popular competitions (corresponding to a
well-known airport game), coalitional games can be repre-
sented succinctly using marginal contribution networks [Ieong
and Shoham, 2005] which allows for the Shapley values to be
computed in polynomial time. The same result holds in our
setting of temporal coalitional games; see Appendix A.5.

3 Quicksort Over Time
Our first case study to illustrate the temporal Shapley value
and the insights that can be gained from it involves the famous
quicksort algorithm. In this context, we focus on the following
strategies for picking the pivot that partitions the list to be
sorted: (i) choosing the first element of the list from the origi-
nal description of quicksort [Hoare, 1961]; (ii) choosing the
middle element [Sedgewick, 1978]; (iii) choosing the median
of a sample of three elements [Sedgewick, 1978]; (iv) choosing
the median of a sample of nine elements [Bentley and McIlroy,
1993]; and (v) the dual-pivot scheme by Yaroslavskiy [2009]
that is used in the standard quicksort implementation in Java.
For all variants except the middle element and dual-pivot ver-
sions, we also consider randomized versions (“random” is the
randomized version of “first”). We include insertion sort as a
point of comparison that predates quicksort [Knuth, 1998].

We test the algorithms on lists of length 10 000, 50 000,
100 000, and 500 000. For each length, we follow Kushagra et
al. [2014] and consider: (i) a list with all-equal elements; (ii) a
list with already-sorted elements; (iii) a list with reverse-sorted

798602199

784476788

671833

798461169

794178118

798470169

798501630

798466233

798360514

100267058

98059604

84173

100151097

99434662

100153715

100167412

100153384

100131186

98900

392238462

671833

50411

10074

2550

22506

57198

405450356

98900

137

671833

6907

552

541

20497

15703

13212030dual pivot−2009

first−1961

insertion−1946

median 3 random−1978

median 3−1978

median 9 random−1993

median 9−1993

mid−1978

random−1961

dual pivot−2009

first−1961

insertion−1946

median 3 random−1978

median 3−1978

median 9 random−1993

median 9−1993

mid−1978

random−1961

Standalone Performance
Shapley Value

Temporal Shapley Value
Marginal Performance

Figure 2: Comparison of standalone performance, Shapley value, tem-
poral Shapley value, and temporal marginal contribution (marginal
contribution to a temporally consistent portfolio) for insertion sort
and different pivot strategies for quicksort.

1e+02

1e+05

1e+08

1946 1961 1978 1993 2009

year
S

um
 o

f t
em

po
ra

l S
ha

pl
ey

 v
al

ue
s

Figure 3: Year-over-year sum of temporal Shapley values for quick-
sort pivot strategies. Note the logarithmic y axis.

elements; (iv) 1 000 lists with random permutations of all-
unique elements; and (v) 1 000 lists with random permutations
of repeated elements. Each sorting algorithm was run on each
of these lists 100 times. The score of each run was the time
the respective algorithm took to sort the respective list. 1

Figure 2 shows the ranking of the implementations. The
most recent implementation has the best performance, while
insertion sort performs worst. Interestingly, the ranking ac-
cording to the Shapley value is exactly the same as for stan-
dalone performance. In contrast, according to the temporal
marginal contribution, the original quicksort implementation
that chooses a random element as pivot is ranked first, followed
by insertion sort and the dual-pivot implementation.

These rankings do not tell the whole story—the dual-pivot
implementation is used in practice, but it is unclear whether it
provided the largest improvement over the previous state of
the art. The temporal Shapley value shows that quicksort with
a random pivot improved the most, starting quicksort’s success
story. The dual-pivot implementation ranks in the middle; it
did not improve as much as the original 1961 implementations,
but more than the incremental improvements thereof.

Figure 3 shows how much the state of the art has improved
over the years. The initial quicksort implementations provide
the largest improvement, while subsequent improvements are
several orders of magnitude smaller and decreasing—changes
become more incremental. The dual-pivot approach represents
a major improvement, with a higher contribution than the
previous ones. The temporal Shapley value clearly shows that
this fundamentally different approach paid off.

1Code available at https://git.io/vpEgM.

4 SAT Solvers Over Time
We now use the temporal Shapley value to quantify the contri-
butions to the state of the art made by the solvers participating
in the SAT competition series [SAT Competitions Website,
2017]. Our experiments include solvers and problem instances
from the 2007, 2009, 2011, 2013, and 2014 competitions. The
competitions each consist of three tracks of problem instances:
random, crafted and application. We excluded (i) solvers we
were unable to obtain from the official SAT competition web-
site or by contacting the authors; (ii) solvers that we could not
build and run on our systems; and (iii) solvers that themselves
use portfolio techniques.2 In total, we considered 121 solvers:
38, 101 and 69 in the random, crafted and application tracks,
respectively, with some solvers in multiple tracks.

For the random track, we considered a total of 1203 hard
uniform k-SAT problem instances; for the crafted track, we
considered 1029 instances manually designed to be challeng-
ing for SAT solvers; for the application track, we considered
1076 instances originating from applications of SAT to real
world problems (e.g., software and hardware verification, cryp-
tography, and planning). We considered both satisfiable and
unsatisfiable instances. As in the 2014 SAT Competition, we
gave each run 14 GB of memory and 5000 CPU sec.

The SAT competition ranks solvers by the number of in-
stances they solve, breaking ties according to runtime. We
adopt the single scoring function introduced by Fréchette et
al. [2016], which models this approach using a single real
value. More specifically, we define the score of an algorithm
i ∈ A on an instance x ∈ X as:

scorex(i) =

{
0 x not solved by i
1 + c−t

|X|·c·|A|+1 otherwise,
(5)

where c is the maximum CPU time allowed for solving an
instance, and t is the CPU time required for solver i to solve
instance x. The score of a set of solversA′ ⊆ A given instance
x is then:

scorex(A′) = max
i∈A′

scorex(i). (6)

The performance of A′ on a set of instances is the sum of the
scores of A′ on all those instances.

Figure 4 shows the results for the random track (results
for the remaining tracks were qualitatively similar, and were
omitted due to limited space). It becomes immediately obvious
that the temporal Shapley value gives a much more accurate
picture of the relative importance of the contributions of the
algorithms. In particular, while all 2007 solvers rank quite
lowly in terms of Shapley value, some of them rank very highly
in terms of the temporal Shapley value. We observed the most
radical changes in rank for the 2007 solvers March-KS and
KCNFS. These no longer contribute much to the state of the art,
but had a large impact in 2007, when they first participated in
the competition. The 2014 solver dimetheus, on the other
hand, ranked first in terms of Shapley value, but only ninth
according to the temporal version. This shows that, although

2We were unable to build 2 solvers from 2014, 2 from 2013, 8
from 2011, 5 from 2009, and 5 from 2007. We were also unable to
run one solver from 2014, one from 2013, and one from 2009.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

144.25268

144.08601

139.91915

57.41773

56.33454

51.75097

44.43418

43.43408

35.08748

28.8338

27.08395

19.16712

19.13952

16.3337

12.43352

10.19402

9.69765

9.0321

8.30224

8.0001

7.75017

7.03675

6.64388

4.87001

4.50018

4.26672

4.26672

3.91678

2.00002

2.00001

1.83337

1.16668

0.83336

4e−05

0

0

0

0

78.42398

63.90765

55.75744

55.15192

52.43065

50.72959

45.33413

44.61692

44.50427

36.26344

31.60638

30.53198

30.41135

28.4814

25.76449

21.82523

20.7125

20.49854

20.15654

19.71357

18.71084

17.82205

16.86642

16.31361

15.36641

14.86641

14.18306

13.18303

9.83857

8.74145

4.81501

3.56499

1.90815

1.88997

0.53389

0.45055

0.14286

0

gnovelty+_2007
ranov_2007

adaptnovelty_2007
TNM_2009

sparrow2011_2011
sapsrt_2007

March−KS_2007
KCNFS_2007

dimetheus_2.100_2014
hybridGM3_2009

iPAWS_2009
sattime2011_2011

BalancedZ_2014
adaptg2wsat2011_2011
DEWSATZ−1A_2007

CSCCSat2014_SC2014_2014
CCgscore_2014

probSAT_sc14_2014
Ncca+_v1.05_2014

CSHCrandMC_2013
gnovelty+2_2009

YalSAT_03l_2014
CCA2014_2.0_2014

sattime_2014
MPhaseSAT_M−2011−02−16_2011

minisat−SAT_2007
MXC_2007

gNovelty+−T_2009
csls−pnorm−8cores_2011
march_br_sat+unsat_2013

march_rw−2011−03−02_2011
MiraXT−v3_2007

march_hi_2011
gNovelty+GCwa_1.0_2013

minipure_1.0.1_2013
Solver43a_a_2013
Solver43b_b_2013

strangenight_satcomp11−st_2013

dimetheus_2.100_2014
BalancedZ_2014
CCgscore_2014
CSCCSat2014_SC2014_2014
probSAT_sc14_2014
Ncca+_v1.05_2014
CCA2014_2.0_2014
sattime_2014
YalSAT_03l_2014
sparrow2011_2011
TNM_2009
sattime2011_2011
adaptg2wsat2011_2011
MPhaseSAT_M−2011−02−16_2011
CSHCrandMC_2013
ranov_2007
iPAWS_2009
gnovelty+_2007
adaptnovelty_2007
hybridGM3_2009
gnovelty+2_2009
gNovelty+−T_2009
march_br_sat+unsat_2013
gNovelty+GCwa_1.0_2013
march_rw−2011−03−02_2011
march_hi_2011
March−KS_2007
KCNFS_2007
csls−pnorm−8cores_2011
sapsrt_2007
DEWSATZ−1A_2007
minipure_1.0.1_2013
MXC_2007
minisat−SAT_2007
MiraXT−v3_2007
Solver43a_a_2013
Solver43b_b_2013
strangenight_satcomp11−st_2013

Temporal Shapley ValueShapley Value

Figure 4: Comparison of classic and temporal Shapley values for the
SAT competition solvers 2007-2014, random track.

dimetheus provides great performance, a significant part
of its performance advantage over most solvers comes on
instances that could also be solved by some of the strongest
early solvers.

Figure 5 shows the year-over-year performance increase of
the state of the art, quantified by the sum of temporal Shapley
values. The improvement over the previous year was largest in
2009, and decreased to almost zero in 2013, which appears to
have been a bad year for innovation in the random track of the
SAT competition. In 2014 there was a substantial improvement
again. This was mostly because of dimetheus, which made
a very strong contribution in terms of temporal Shapley value.

5 Constraint Solvers Over Time
We now consider the MiniZinc challenge [Stuckey et al., 2014].
We conducted experiments on the solvers from the 2014 (16
solvers), 2015 (20 solvers), and 2016 (25 solvers) challenges.
We excluded the solvers SunnyCP and MZNGurobi, be-
cause both required access to a custom license server set up for
the competition for the commercial Gurobi solver. We used
solvers from the 2014, 2015, and 2016 challenges, because
virtual machines with the runtime environment, compilation
options, and call parameters were not available for other years.
We used the problem instances from the 2013, 2014, 2015, and
2016 challenges (100 instances each). The challenges were di-
vided into finite domain, free, and parallel search tracks. The
cutoff time for all solvers on all instances was 1200 seconds.

The MiniZinc challenge uses a scoring function based

0

200

400

600

2007 2009 2011 2013 2014

year

S
um

 o
f t

em
po

ra
l S

ha
pl

ey
 V

al
ue

s

Figure 5: Year-over-year change of the sum of temporal Shapley
values for the SAT competition 2007–2014, random track.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9987.86155

360.7717

1261.4996

29828.71058

4376.2985

922.81764

49647.2861

0

170.56476

21435.6316

5163.9305

197.036

16878.17865

12376.60633

193.93191

4775.12936

17831.07372

14097.37673

8886.77925

91361.24195

150.02742

20393.03799

192.78811

3267.92072

12513.1466

9828.08541

32189.36215
34970.99061

7059.47499

15552.43907

6190.81406

7087.25379

6756.47091

13073.56821
14389.56267

5262.55503

15095.99322

16977.5178

36090.70992

6071.40394

18324.39121

15746.33068
15810.6008

52.19571
0

6853.37461

11324.41791

Choco_2014

Choco_2016

Choco3_2015

Chuffed_2015

Chuffed_2016

Concrete_2016

G12Chuffed_2014

G12FD_2015

G12FD_2016

Gecode_2014

Gecode_2015

Gecode_2016

JaCoP_2014

JaCoP_2015

JaCoP_2016

LCG−Glucose_2016

OpturionCPX_2014

OpturionCPX_2015

OR−Tools_2015

ORTools_2014

PicatCP_2014

PicatCP_2016

SICStus_2014

SICStus_2016

Choco_2014

Choco_2016

Choco3_2015

Chuffed_2015
Chuffed_2016

Concrete_2016

G12Chuffed_2014

G12FD_2015

G12FD_2016

Gecode_2014

Gecode_2015
Gecode_2016

JaCoP_2014

JaCoP_2015

JaCoP_2016

LCG−Glucose_2016

OpturionCPX_2014

OpturionCPX_2015

OR−Tools_2015
ORTools_2014

PicatCP_2014
PicatCP_2016

SICStus_2014

SICStus_2016

Temporal Shapley Value Shapley Value

Figure 6: Comparison of classic and temporal Shapley values for the
MiniZinc challenge, finite domain track.

on Borda voting. Each instance “ranks” solvers, which are
awarded points proportional to the number of solvers they beat.
This scoring function takes relationships between solvers into
account, which is undesirable for our purposes. We therefore
scored runs by running time.

Figure 6 shows Shapley values and temporal Shapley values
for the finite domain track. The results for the other tracks
were qualitatively similar (not shown due to limited space).
We observed similar results as for the SAT competition—early
solvers made greater contributions in terms of the temporal
Shapley value than in terms of Shapley value, and most (but
not all) of the highest-ranked solvers came from the first year
of the challenge. For example, the highest-ranked solver in
terms of the temporal Shapley value, ORTools, was entered
in the first year but ranked only sixth in terms of Shapley
value. LCG-Glucose, entered in 2016, ranked first in terms
of Shapley value, but only 13th according to the temporal
Shapley value.

Figure 7 shows the year-over-year change of the improve-
ment. As for the SAT competition, performance increases
diminished over time, with the lowest improvement in the

0

50000

100000

150000

200000

2014 2015 2016

year

S
um

 o
f t

em
po

ra
l S

ha
pl

ey
 V

al
ue

s

Figure 7: Year-over-year change of the sum of temporal Shapley
values for the MiniZinc challenge solvers 2014–2016, finite domain
track.

most recent year. The other tracks of the MiniZinc challenge
were similar, although 2016 showed a slightly greater perfor-
mance increase than 2015 in the parallel search track.

6 Conclusions
We introduced a principled approach to evaluating the contri-
butions that individual solvers make to the state of the art while
taking time into account: the temporal Shapley value. Our
work complements previous work that quantified the contri-
butions of algorithms with the (classic) Shapley value, which
is appropriate for use in cases where all algorithms are on the
same footing, but can create the misleading impression that
older algorithms contributed little to the state of the art, even
though they form the basis for newer algorithms.

We laid firm theoretical foundations for our work, extending
coalitional game theory to a setting in which coalitions must
form in a way consistent with temporal constraints. We defined
an analogue of the classic Shapley value for the temporal
setting, showing axiomatically that it preserves the beneficial
properties of the classic Shapley value.

We then performed an experimental analysis of the well-
known quicksort algorithm and solvers participating in inter-
national competition in two prominent areas of AI, namely
SAT solving and Constraint Programming, to demonstrate the
impact of our framework. These examples illustrated that the
temporal Shapley value reflects the impact that an algorithm
had on the state of the art more accurately than the Shap-
ley value—early algorithms get the credit they deserve. We
also performed an aggregate year-over-year analysis, which
showed that the rate of progress in both AI fields has slowed
in recent years.

Acknowledgements
We thank Andreas Schutt for kindly providing the virtual ma-
chines of the MiniZinc challenge solvers and helping to set up
the experiments. Kevin Leyton-Brown, Alexandre Fréchette
and Lars Kotthoff were supported by an NSERC E.W.R. Stea-
cie Fellowship; in addition, all of these, along with Holger
Hoos, were supported under the NSERC Discovery Grant
Program and Compute Canada’s Research Allocation Com-
petition. Tomasz P. Michalak was supported by by the Polish
National Science Centre grant 2015/19/D/ST6/03113.

References
[Aadithya et al., 2011] K.V. Aadithya, T.P. Michalak, and

N.R. Jennings. Representation of coalitional games with
algebraic decision diagrams. In 10th International Joint
Conference on Autonomous Agents and Multi-Agent Sys-
tems, pages 1121–1122, 2011.

[Bentley and McIlroy, 1993] Jon L. Bentley and M. Douglas
McIlroy. Engineering a sort function. Software: Practice
and Experience, 23(11):1249–1265, 1993.

[Carlsson et al., 1997] Mats Carlsson, Greger Ottosson, and
Björn Carlson. An open-ended finite domain constraint
solver. In Programming Languages: Implementations, Log-
ics, and Programs, 9th International Symposium, pages
191–206, 1997.

[Chalkiadakis et al., 2011] G. Chalkiadakis, E. Elkind, and
M. Wooldridge. Computational Aspects of Cooperative
Game Theory. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers,
2011.

[Elkind et al., 2009] E. Elkind, L.A. Goldberg, P.W. Gold-
berg, and M. Wooldridge. A tractable and expressive class
of marginal contribution nets and its applications. Mathe-
matical Logic Quarterly, 55(4):362–376, 2009.

[Faigle and Kern, 1992] Ulrich Faigle and Walter Kern. The
Shapley value for cooperative games under precedence con-
straints. International Journal of Game Theory, 21(3):249–
266, 1992.

[Fréchette et al., 2016] Alexandre Fréchette, Lars Kotthoff,
Talal Rahwan, Holger H. Hoos, Kevin Leyton-Brown, and
Tomasz P. Michalak. Using the Shapley value to analyze
algorithm portfolios. In 30th AAAI Conference on Artificial
Intelligence, pages 3397–3403, February 2016.

[Gebser et al., 2011] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Torsten Schaub, Marius Thomas Schnei-
der, and Stefan Ziller. A portfolio solver for answer set
programming: preliminary report. In 11th International
Conference on Logic Programming and Nonmonotonic Rea-
soning, pages 352–357. Springer, 2011.

[Gomes and Selman, 2001] Carla P. Gomes and Bart Selman.
Algorithm portfolios. Artificial Intelligence, 126(1–2):43–
62, 2001.

[Helmert et al., 2011] Malte Helmert, Gabriele Röger, and
Erez Karpas. Fast downward stone soup: A baseline for
building planner portfolios. In ICAPS-2011 Workshop on
Planning and Learning (PAL), pages 28–35, 2011.

[Hoare, 1961] C. A. R. Hoare. Algorithm 63: Partition. Com-
mun. ACM, 4(7):321, July 1961.

[Huberman et al., 1997] Bernardo A. Huberman, Rajan M.
Lukose, and Tad Hogg. An economics approach to hard
computational problems. Science, 275:51–54, January 3
1997.

[Ieong and Shoham, 2005] S. Ieong and Y. Shoham.
Marginal contribution nets: a compact representation
scheme for coalitional games. In 6th ACM Conference on
Electronic Commerce, pages 193–202, 2005.

[Knuth, 1998] Donald E. Knuth. The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., 1998.

[Kotthoff, 2014] Lars Kotthoff. Algorithm selection for com-
binatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

[Kushagra et al., 2014] Shrinu Kushagra, Alejandro López-
Ortiz, J. Ian Munro, and Aurick Qiao. Multi-pivot Quick-
sort: Theory and Experiments. In Meeting on Algorithm
Engineering & Expermiments, pages 47–60. Society for
Industrial and Applied Mathematics, 2014.

[Leyton-Brown et al., 2003] Kevin Leyton-Brown, Eugene
Nudelman, Galen Andrew, James McFadden, and Yoav
Shoham. A portfolio approach to algorithm selection. In
18th International Joint Conference on Artificial Intelli-
gence, pages 1542–1543, 2003.

[Michalak et al., 2010] T.P. Michalak, D. Marciniak,
M. Samotulski, T. Rahwan, P. McBurney, M. Wooldridge,
and N.R. Jennings. A logic-based representation for
coalitional games with externalities. In 9th International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 125–132, 2010.

[Monderer and Samet, 2002] Dov Monderer and Dov Samet.
Variations on the Shapley value. In Handbook of Game
Theory with Economic Applications, volume 3, chapter 54,
pages 2055–2076. Elsevier, 1st edition, 2002.

[SAT Competitions Website, 2017] SAT Competitions Web-
site. http://www.satcompetition.org, 2017.

[Sedgewick, 1978] Robert Sedgewick. Implementing Quick-
sort Programs. Commun. ACM, 21(10):847–857, October
1978.

[Shapley, 1953] Lloyd S. Shapley. A value for n-person
games. In Contributions to the Theory of Games, volume
II, pages 307–317. Princeton University Press, 1953.

[Solan et al., 2013] Eilon Solan, Shmuel Zamir, and Michael
Maschler. Game Theory. Cambridge University Press,
2013.

[Stuckey et al., 2014] Peter J. Stuckey, Thibaut Feydy, An-
dreas Schutt, Guido Tack, and Julien Fischer. The MiniZinc
Challenge 2008-2013. AI Magazine, 35(2):55–60, 2014.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Re-
search, 32:565–606, 2008.

[Xu et al., 2012] Lin Xu, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Evaluating component solver contri-
butions to portfolio-based algorithm selectors. In 15th In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing, pages 228–241. Springer-Verlag, 2012.

[Yaroslavskiy, 2009] Vladimir Yaroslavskiy. Dual-
Pivot Quicksort algorithm. http://codeblab.
com/wp-content/uploads/2009/09/
DualPivotQuicksort.pdf, 2009.

A Appendix

A.1 Notation

Table 1: Notation used throughout the paper.

Notation Description

A = {1, . . . , α} The set of players in a coalitional game, or set of algorithms in a portfolio.
(A, v) or v A coalitional game specifying the value v(C) of every coalition C ⊆ A.
φi(A, v) or φi(v) The Shapley value of player i in the coalitional game (A, v); see Equation 1.

T (A) = {T 1, . . . , T q} A partition of A into q equivalence classes; each class may represent all algorithms developed in the same year.
Q(i) The index of the equivalence class of player (or algorithm) i.
� A precedence relation between algorithms, where ∀i, j ∈ A, i � j iff Q(i) �Q(j).

A� A strict partially ordered set (i.e., poset) of the elements of A according to �.

C(A�) The set consisting of every downward closed set of algorithms, i.e., every C ⊆ A such that, ∀i ∈ C, i � j
implies that j ∈ C.

Π(A) The set of all permutations of A.

Π�(A) Π�(A) =
{
π ∈ Π(A) : ∀1 ≤ i ≤ α : {π(1), π(2), . . . , π(i)} ∈ C(A�)

}
. In words, it is the set consisting of

every permutation for which every prefix is downward closed.

π(i) The ith element in permutation π.
Cπi The coalition consisting of all predecessors of player i in permutation π.

(A,�, v�) or v� A temporal coalitional game specifying the value v�(C) of every coalition C ⊆ A that is downward closed
according to �.

φ�i (A,�, v�) or φ�i The temporal Shapley value of player i in the temporal coalitional game (A,�, v�); see Equations 2 and 3.

A.2 The Four Main Axioms of the Shapley Value
The following set of axioms are widely seen as desirable properties for a coalitional solution concept, φ, that captures each
player’s fair contribution to a coalition, C, in a coalitional game, (A, v), where φi(A, v) denotes the contribution of player i
according to φ.
Axiom 1 (Additivity). For any v, w ∈ V(A) and C ∈ 2A, let [v + w](C) denote v(C) + w(C). Then φ(A, v) + φ(A,w) =
φ(A, [v + w]).

Axiom 2 (Efficiency). The grand coalition’s value is divided entirely among the players: ∀v ∈ V(A) :
∑
i∈A φi(A, v) = v(A).

Axiom 3 (Null Player). A player who contributes nothing receives nothing: for any v ∈ V(A) and i ∈ A, if v(C∪{i})−v(C) =
0 for every C ∈ 2A\{i}, then φi(A, v) = 0.

Axiom 4 (Symmetry). Payoffs do not depend on the players’ names, i.e., for every v ∈ V(A) and every bijection f : A→ A,
φ(A, f(v)) = f(φ)(A, v).

A celebrated theorem shows that these solution concepts can only be satisfied by a single solution concept, namely the Shapley
value (see, e.g., Solan et al. [2013] for details), which is defined as:

φi(A, v) :=
1

|A|!
∑

π∈Π(A)

v(Cπi ∪ {i})− v(Cπi).

A second, equivalent formulation of the Shapley value is as follows:

φi(A, v) =
∑

C∈2A\{i}

(|A| − |C| − 1)! |C|!
|A|!

(v(C ∪ {i})− v(C)) . (7)

A.3 Proof of Lemma 1
Proof. Let us begin by rewriting Equation 2 for the temporal Shapley value as follows:

φ�i =
1∏q

k=1 |T k|!
∑

π∈Π�(A)

v�(Cπi ∪ {i})− v�(Cπi),

which comes from the fact that there are exactly
∏q
k=1 |T k|! permutations in Π�(A).

Next, let us consider an arbitrary Cπi . Recall that Cπi is the coalition consisting of all the players that precede i in permutation
π ∈ Π�(A). Let us rewrite Cπi as follows:

Cπi =

p−1⋃
k=1

T k ∪ Cp,

where p = Q(i). Note that Cp ⊆ T p \ {i} and that, as per Equation 2, i 6∈ Cπi .
Observe that in temporal coalitional games, the order of players in each equivalence class does not matter. This means that,

among all the permutations in Π�(A), there are exactly
p−1∏
k=1

T k!|Cp|!

orderings in which coalition
⋃p−1
k=1 T

k ∪ Cp could be permuted. Furthermore, for each particular ordering of this coalition,
there exist (T p \ Cp − 1)!

∏q
k=p+1 T

k! permutations in Π�(A) that contain this ordering, and where player i is exactly in place
|T 1 ∪ T 2 ∪ . . . T p−1 ∪ Cp|+ 1. In other words, there are exactly

p−1∏
k=1

T k!|Cp|!(T p \ Cp − 1)!

q∏
k=p+1

T k!,

such permutations. Since, in each such permutation, player i contributes to coalition
⋃p−1
k=1 T

k ∪ Cp, we may write:

φ�i =
∑

Cp⊆Tp\{i}

∏p−1
k=1 |T k|!|Cp|!(T p \ Cp − 1)!

∏q
k=p+1 |T k|!∏q

k=1 |T k|!

(
v�

(
p−1⋃
k=1

T k ∪ Cp ∪ {i}

)
− v�

(
p−1⋃
k=1

T k ∪ Cp
))

.

Now, reducing common divisors from the numerator and denominator, we obtain Equation 3.

A.4 Proof of Lemma 2
Proof. In the proof we will use the Möbius function—a unique function µ : C(A�)× C(A�)→ Z that satisfies the following
system of equations:

µ(S,U) = 0 if S 6⊆ U, (8)
µ(S,U) = 1 if S = U , and (9)∑

S⊆W⊆U

µ(S,W) = 0 if S (U. (10)

In the first step, we will show that the Möbius function for temporal coalitional games has the following form. For every
S,U ∈ C(A�):

µ∗(S,U) =

{
(−1)|U |−|S| if ∀i∈U\S∀j∈A\S Q(i) ≤ Q(j),

0 otherwise.
(11)

Since the Möbius function is uniquely defined by 8–10, to prove 11, it suffices to show that µ∗ satisfies all the three condition. As
for 8 and 9, if S 6⊆ U , then, from definition, µ∗(S,U) = 0 and µ∗(S, S) = 1 for every S,U ∈ C(A�), i.e., both these conditions
are satisfied.

Let us now consider Condition 10, i.e., let us assume that S (U . Before proceeding, we need to introduce some additional
notation. In particular, let us denote by L the set of players/solvers from A \ S that belong to the lowest equivalence class, i.e.,
L = {i ∈ A \ S : ∀j∈A\SQ(i) ≤ Q(j)}.

Now, since U ∈ C(A�), the following two cases can be distinguished:
(a) either U contains only a part of L and no element from any higher equivalence class, i.e., (U \ S) ⊆ L; or
(b) U contains the whole L, i.e., L ⊆ (U \ S).

We will now prove that, in both cases, 11 satisfies condition 10. In particular, from binomial theorem, for case (a) we get:∑
S⊆W⊆U

µ∗(S,W) =
∑

S⊆W⊆U

(−1)|W |−|S| = (1− 1)|U |−|S| = 0,

and for case (b), we get: ∑
S⊆W⊆U

µ∗(S,W) =
∑

S⊆W⊆S∪L

µ∗(S,W) = (1− 1)|L| = 0.

Hence, we proved the Möbius function for temporal coalitional games is given by formula 11.
Following Lemma 2 from Faigle and Kern[Faigle and Kern, 1992, Lemma 2], we may write:

v�=
∑

U∈C(A�)

 ∑
S∈C(A�)

µ∗(S,U)v�(S)

σU .

In our setting, by representing U as
⋃p−1
r=1 T

r ∪ C for some p ∈ {1, . . . , q} and C ⊆ T p, we get equivalently

v�=

q∑
p=1

∑
C⊆Tp

C 6=∅

 ∑
S∈C(A�)

µ∗(S,

p−1⋃
r=1

T r ∪ C)v�(S)

σ⋃p−1
r=1 T

r∪C .

Finally, using 11 we get that µ∗(S,
⋃p−1
r=1 T

r ∪ C) is non-zero iff and only if S =
⋃p−1
r=1 T

r ∪D for some D ⊆ C. Thus,

v�=

q∑
p=1

∑
C⊆Tp

C 6=∅

∑
D⊆C

(−1)|C|−|D|v�(

p−1⋃
r=1

T r ∪D)

σ⋃p−1
r=1 T

r∪C .

This concludes the proof of Lemma 2.

A.5 Computing the Temporal Shapley Value in Polynomial Time for the Characteristic Function 6
In general, if we interpret Equation 3 as an algorithm—which is less demanding than Equation 2 —computing the temporal
Shapley value of every solver takes time O(

∑q
p=1 2T

p

), i.e., the computation time is exponential in the sizes of equivalence
classes. However, the specific form of the characteristic function 6 was already shown to enable polynomial computations
of the standard Shapley value [Fréchette et al., 2016] for standard coalitional games. To this end, Fréchette et al. [2016]
used marginal contribution networks (MC-nets)—a well-known compact representation for coalitional games that admits
polynomial-time computation of the Shapley value [Ieong and Shoham, 2005; Chalkiadakis et al., 2011] and that had been
already generalized [Elkind et al., 2009; Aadithya et al., 2011] and extended [Michalak et al., 2010] in various ways. In this
appendix, we extend the result by Fréchette et al. [2016] to the temporal Shapley value and temporal coalitional games.

With this scheme, a game is represented by a set of rules,R, each of which is of the form F → V , where F is a propositional
formula over A and V is a real number. A coalition C is said to meet a given formula F iff and only if F evaluates to true
when all Boolean variables corresponding to the players in C are set to true, and all Boolean variables corresponding to players
outside C are set to false. We write C |= F to denote that C meets F . In MC-nets, if coalition C does not meet any rule then
its value is 0. Otherwise, the value of C is the sum of V from every rule in which F is met by C. More formally:

v(C) =
∑

F→V∈R: C|=F

V. (12)

For example, the MC-net where R = {2 → 3, 1 ∧ 2 → 5} corresponds to the game G = ({1, 2}, v) where v({1}) = 0,
v({2}) = 2 and v({1, 2}) = 8. Intuitively, in this example, the rules mean that whenever 2 is present in a coalition, the value of
that coalition increases by 3, and whenever 1 and 2 are present together in a coalition, its value increases by 5.

Ieong and Shoham [2005] focused on a particular version of their representation, called basic MC-nets, where F is made only
of conjunctions of positive and/or negative literals, i.e., it has the form

pi1 ∧ . . . ∧ pik ∧ ¬nj1 ∧ . . . ∧ ¬njl → V. (13)

Let us write such a basic rule as F(P,N)→ V , where P (N) is the set of positive (negative) literals. Ieong and Shoham showed
that if a coalitional game is represented by a set of such basic rules:

R =
{
F (P1,N1)→ V1, . . . ,F

(
P|R|,N|R|

)
→ V|R|

}
,

then the Shapley value can be computed in time O(|A| · |R|).
We will now develop a method which, given the temporal coalitional game (A,�, v�), where v� is given by the characteristic

function 6, allows for computing the temporal Shapley value in polynomial time.
In particular, we will show that, for every temporal coalitional game with the characteristic function 6, there exists a standard

coalitional game:
• that can be represented with the set of basic MC-net rules that is of size polynomial in the number of solvers, |A|, and

instances, |X|, and
• the Shapley value of this standard coalitional game equals to the temporal Shapley value of the temporal coalitional game.

In the first step, for each instance x ∈ X , and for each equivalence class T p ∈ T , let us sort solvers i ∈ A in the ascending
order with respect to their individual performance on x. Given x ∈ X , we will denote the sequence of such orderings for
p = 1, . . . , q by −→s x. Formally, −→s x is a function A→ {1, . . . , |A|} and we will denote by −→s −1

x (i) the position of solver i in−→s x.
The following holds:

Theorem 2. Let (A,�, v�) be the temporal coalitional game, where the characteristic function v� is given by 6. Furthermore,
let (A, v) be a standard coalitional that can be represented as the following set of basic MC-net rules:

R =
⋃
x∈X

−→s x(1)
∧|T 1|
k=2 ¬

−→s x(k)→ scorex(−→s x(1))
. . .
−→s x(|T 1|)→ scorex(−→s x(|T 1|))
−→s x(|T 1|+ 1)

∧|T 2|
k=2 ¬

−→s x(k)→ scorex(−→s x(|T 1|+ 1))− scorex(−→s x(|T 1|))
. . .
−→s x(|T 1 ∪ T 2|)→ scorex(−→s x(|T 1 ∪ T 2|))− scorex(−→s x(|T 1|))
. . .
−→s x(|

⋃q−1
k=1 T

k|+ 1)
∧|A|
k=2 ¬

−→s x(k)→ scorex(−→s x(|
⋃q−1
k=1 T

k|+ 1)− scorex(−→s x(|
⋃q−1
k=1 T

k|))
. . .
−→s x(|A|)→ scorex(−→s x(|A|)− scorex(−→s x(|

⋃q−1
k=1 T

k|))

(14)

the size of which is |X| × |A|. Then, for all i ∈ A it holds that: φi(A, v) = φ�i (A,�, v�).

Proof. We will continue to use the notation from the proof of Lemma 1, i.e., we will decompose any C ∈ C(A) into
C =

⋃p−1
k=1 C

p, where Cp ∪ T p 6= ∅ and Cp ∩ T p+1 = ∅.
We begin by comparing the formula for the temporal Shapley value obtained in Lemma 1, i.e.:

φ�i (A,�, v�) =
∑

Cp⊆Tp\{i}

|Cp|!(|T p \ Cp| − 1)!

|T p|!

(
v�

(
p−1⋃
k=1

T k ∪ Cp ∪ {i}

)
− v�

(
p−1⋃
k=1

T k ∪ Cp
))

, (15)

where p = Q(i), to the corresponding formula for the standard Shapley value, i.e.:

φi(A, v) =
∑

C∈2A\{i}

(|A| − |C| − 1)! |C|!
|A|!

(v(C ∪ {i})− v(C)) . (7)

We observe that both formulas are, in principle, the same. In particular, the coefficient |C
p|!(|Tp\Cp|−1)!
|Tp|! is exactly the same as

(|A|−|C|−1)! |C|!
|A|! , if we consider T p to be the set of players. Theoretically, this is not the case, because in each coalition that

contains any player from T p, by definition, there must be all the players from the previous equivalence classes T 1, . . . , T p−1.
However, all such players from the previous equivalence classes have no direct bearing on the temporal Shapley value, as the sum
in the formula 15 from Lemma 1 only cycles over coalitions from T p. In other words, they should be considered as constant.

Furthermore, we observe that the element(
v�

(
p−1⋃
k=1

T k ∪ Cp ∪ {i}

)
− v�

(
p−1⋃
k=1

T k ∪ Cp
))

in Equation 15 and the element
(v(C ∪ {i})− v(C))

in Equation 7 are both marginal contributions.
We have just established that the formula for the temporal Shapley value is the same as the formula for the standard Shapley

value, where the equivalence class T p, p = Q−1(i), is the set of players A, and all the players from previous equivalence classes
should be considered as constants. This means that we can use the result from Fréchette et al. [2016] for computing the standard
Shapley value for the characteristic function 6 using simple MC-nets. In particular, assuming for clarity that there is only one
problem instance, i.e., X = {x}, we have the following set of rules:

Rx =

−→s x(1)

∧|A|
k=2 ¬

−→s x(k)→ scorex(−→s x(1))
−→s x(2)

∧|A|
k=3 ¬

−→s x(k)→ scorex(−→s x(2)
. . .
−→s x(|A|)→ scorex(−→s x(|A|))

 . (16)

Here, A = T p, where p = Q−1(i). Furthermore, we observe that the value of each rule scorex(−→s x(.) should be modified. This
is because the interpretation of MC-nets in the context of standard Shapley value states that the value of each coalition is initially
zero and is subsequently increased by the value of each rule satisfied by the coalitions, i.e., the value of the rule is the marginal
contribution of the players in the rule to each coalition that satisfies the rule. Conversely, in the context of temporal Shapley
valeu and the MC-net rules over the set of players T p, we have to take into account that the value of each coalition is not zero
initially but

v�

(
p−1⋃
k=1

T k

)
.

Therefore, we need to modfiy the value of each rule by −scorex(−→s x(|
⋃p−1
k=1 T

k|)) for all p = 2, . . . , q.
This concludes the proof of Theorem 2.

