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We present a large-scale investigation of the variability of run times on physical and virtualised hardware. The aim of our investigation
is to establish whether cloud infrastructures are suitable for running computational experiments where the results rely on reported run
times. Our application is the use of the Minion constraint solver as an example of an Artificial Intelligence experiment. We include two
major providers of public cloud infrastructure, Amazon and Rackspace, as well as a private Eucalyptus cloud. While there are many
studies in the literature that investigate the performance of cloud environments, the problem of whether this performance is consistent
and run time measurements are reliable has been largely ignored.

Our comprehensive experiments and detailed analysis of the results show that there is no intrinsic disadvantage of virtualised hardware
over physical hardware and that in general cloud environments are suitable for running computational experiments. Our meticulous
investigation reveals several interesting patterns in the variability of run times that researchers using a cloud for this purpose should be
aware of. We close by giving recommendations as to which type of virtual machine with which cloud provider should be used to achieve
reproducible results.
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1 Introduction

Cloud computing, utility computing or on-demand computing is a computing paradigm that provisions
resources as and when they are needed. Instead of buying and maintaining a large pool of computational
resources that is mostly idle, capacity is added only if it is required and relinquished when demand
diminishes. This capacity usually takes the form of infrastructure that is rented from a cloud computing
provider.
One key enabler of this paradigm is virtualisation. Virtual resources are provisioned on top of physical

resources to allow for more fine-grained control of what is used. The term virtual machine is commonly
used to describe a bundle of virtualised resources that provide comparable functionality to a physical
machine. A physical machine can be used to provide resources for several virtual machines. This increases
the overall utilisation of the physical hardware but maintains the illusion that dedicated hardware is being
provided to the customer.
The provision of virtualised resources has many benefits, but also raises some issues. If a piece of code

is run on a physical CPU, it is relatively easy to determine its performance. If the CPU is virtualised, it
becomes much harder to do so. The performance depends not only on the physical CPU that the virtual
CPU runs on and the virtualisation software, but also on other virtual CPUs that happen to use the same
physical CPU. The same issues apply to other resources such as network bandwidth and disk throughput.
Cloud computing providers usually give an indication of the physical hardware that backs the available

virtualised resources. This may however not be a good indicator of the performance that can be achieved in
practice; in particular two different virtual machines running on the same physical hardware may exhibit
significantly different performance behaviour in practice.
This paper investigates the differences in CPU performance in practice for a number of different virtu-

alised resources and compares the results to what can be achieved on non-virtualised physical resources.
The focus of the investigation is not on the absolute performance that can be achieved, but rather how
consistent that performance is.
For applications in academic and industrial research, this question is often the more important one.

Scientific rigour demands that results are presented in a way that they can be verified by the scientific
community. If the infrastructure used for empirical investigations does not enable this however, it becomes
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unusable for this purpose.

2 Background

Advancements in Artificial Intelligence research are mostly twofold. On one hand, theoretical investigations
provide an insight into problems. On the other hand, improvements may enable us to solve particular
problems better in practice. A lot of research presents theoretical advances that are then used to show
that it can be used to achieve performance improvements in practice. Often, practical improvements are
concerned with reducing the time required to solve a problem.
To demonstrate these performance improvements, computational experiments are run that compare

the new approach to previous approaches. In many cases, running these experiments requires a lot of
computational resources. Unless the improvements are very clear, a large amount of empirical data may
be required to build statistical models of the behaviour of a set of algorithms.
This is an application where utility computing has the potential to reduce costs significantly while

providing greater flexibility at the same time. Researchers who need to carry out extensive empirical
investigations face a trade-off between provisioning too few machines and not being able to gather a
sufficient amount of experimental data in time for a deadline and provisioning too many and having
to pay for and maintain machines that are mostly idle. This is not only an issue of financial cost, but
also of research staff spending their time on system administration duties and increasing the burden on
the environment through higher energy consumption. In addition to these considerations, it may not be
possible for smaller groups of researchers to provide the up-front infrastructure investment to run large-
scale experiments or even provide the physical space for a lot of machines.
There is another compelling reason to use virtualised environments for gathering empirical data in

a scientific context. Research publications sometimes go to great lengths to make sure that interested
parties will be able to reproduce experiments. Not only the physical hardware used is of interest, but
also the operating system and system software. However, replicating these exact conditions is usually
infeasible. This may be because the exact hardware or software is not available anymore. Even if that is
the case, it requires significant commitment by either modifying the configuration of an existing machine
or provisioning and configuring a new machine.
Running experiments in a virtualised environment allows to “shrink-wrap” the experiment and the

conditions it was run in, for example by taking a snapshot of the disk image of the virtual machine. This
shrink-wrapped experiment can be made publicly available alongside a publication to enable anyone to
easily reproduce the experimental results. It does not only take care of reproducing the same environment,
but also includes all other configuration steps and preliminaries that may be required. There remains the
issue of replicating the environment the virtual machine was run in.
The external factors that affect the behaviour of a virtual machine, by design, cannot be controlled

by a user of cloud computing. The provider of the infrastructure may change the underlying physical
hardware for example. Before this becomes an issue however, we need to establish whether it is feasible at
all to provide such shrink-wrapped experiments or even to run computational experiments reliably. This
investigation focuses on the latter issue.
We are concerned with two major problems when running experiments. First, we want the results to

be reliable in the sense that they faithfully represent the true performance of an algorithm or a system.
Second, we want them to be reproducible in the sense that anybody can run the experiments again and
achieve the same results we did.
We can assess the reliability of an experiment by running it several times and judging whether the results

are the same within some margin of experimental error. Reproducibility is related to this notion, but more
concerned with being able to reproduce the results in a different environment or at a different time. The
two concepts are closely related however – if we cannot reproduce the results of an experiment it is also
unreliable and if the results are unreliable there is no point in trying to reproduce them.
Running experiments on virtualised hardware gives an advantage in terms of reproducibility because

the environment that an experiment was run in can be shrink-wrapped. This not only removes possible
variability in the results due to different software versions, but also enables to reproduce experiments with
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unmaintained systems that cannot be built and would not run on contemporary operating systems.
The main questions under investigation in this paper are as follows.

• Is there inherently more variation in terms of CPU time on virtualised hardware than on non-virtualised
hardware?

• Are the CPU times reported on virtualised hardware more variable than on non-virtualised hardware?

• How reliable and reproducible are the results of experiments run in the cloud?

• How does this behaviour vary across different clouds?

While our focus is on computational experiments, we believe the subject to be of interest in general. If a
company is planning the provisioning of virtual resources, the implicit assumption is that the performance
of the planned resources can be predicted based on the performance of the already provisioned resources.
If these predictions are unreliable, too few resources could be provisioned, leading to a degradation of
performance, or too many, leading to waste. This is one of the fundamental differences of physical and
virtualised hardware – a physical machine that has the same specifications as another physical machine
that has already been provisioned will most likely exhibit the same behaviour.

3 Related work

Noise and variance in measurements is an issue not only in Artificial Intelligence, but in Computer Science
and indeed science in general. If the accuracy of the measurement is less than the expected effect, it cannot
be observed reliably. A common approach to mitigating this problem is to repeatedly take measurements
and assess the variability to be able to account for the error.
While the analysis and mitigation of measurement errors in the physical sciences has a long tradition

and there are procedures to deal with them, this is much less the case in Computer Science. Cohen (1995)
notes that

“If noise factors turn out to have large effects, then variance within conditions will be larger than we like [. . . ].”

He refers to “noise variables” as external factors that can be observed and measured reliably. The random
noise introduced by empirically observing run times of programmes does not fall into that category, but
the statement is still relevant – we certainly want the effects of the noise to be as small as possible.
Most publications that report improvements on previous methods by presenting empirical results demon-

strate improvements by a large factor or even orders of magnitude. In this context, random noise in ex-
perimental runs is not much of an issue. However, usually the improvement is not that large across all
experiments. On a fraction of the empirical measurements, the difference between two approaches is usu-
ally small enough to be influenced by random noise. While a small number of publications addresses this
issue by for example repeating measurements and reporting an average, it is ignored by many.

3.1 Cloud experiments

In Artificial Intelligence, there are very few publications that use the cloud as a computational resource.
Burkett et al. (2011) use it as a drop-in replacement for physical hardware. They repeat individual ex-
periments many times and average the run times to account for variations. Lu et al. (2011) on the other
hand present a case that looks at the specific characteristics of the infrastructure of the cloud and adapts
a common Artificial Intelligence application to it. They report good empirical results for their adaptation.
Klinginsmith et al. (2011) consider eScience in general and describe how to reproduce an experimental

setup with empirical results in a cloud environment. They focus on recreating the experimental environment
to enable other researchers to replicate experiments and do not go as far as saving and restoring the entire
virtual machine image. The variability of empirical measurements in the cloud is something they do not
consider at all.
The performance of virtualised hardware and cloud-provisioned resources has been of interest to re-

searchers since the emergence of the techniques. Accordingly, a relatively large number of publications
considers this issue. In a comparison of different virtualisation techniques, Matthews et al. (2007) conclude
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that in general techniques other than operating system level virtualisation achieve good performance isola-
tion, although a badly behaving virtual machine does have a measurable impact on other virtual machines
running on the same physical hardware. Koh et al. (2007) perform a similar investigation, but come to the
conclusion that the investigated virtualisation technique does not provide sufficient performance isolation.
In a more recent analysis, Younge et al. (2011) focus specifically on comparing the performance of

different virtualisation techniques that underlie cloud infrastructure. They conclude that virtual machines
based on the KVM hypervisor deliver the best general performance for high-performance computing.
Walker (2008) performs one of the earliest investigations into the performance of the Amazon cloud and

its suitability for high-performance computing. He concludes that the performance gap between physical
and virtual hardware is substantial and inhibits the adoption of cloud computing for scientific purposes.
Ostermann et al. (2009) perform a similar investigation and come to similar conclusions.
Jackson et al. (2010) compare the performance of Amazon EC2 virtual machines to other HPC systems.

They come to similar conclusions as the previous studies and note in particular that performance of cloud
systems decreases as the amount of network communication increases. They close by remarking that

“Variability is introduced by the shared nature of the virtualized environment, by the network, and by differ-
ences in the underlying non-virtualized hardware.”

Rehr et al. (2010) perform another investigation of cloud performance for HPC applications along similar
lines. They also conclude that network performance is the main factor that inhibits replacing physical
HPC infrastructure but note that for applications with low network requirements, the cloud is a feasible
alternative to physical hardware.
El-Khamra et al. (2010) focus on the predictability of the performance of cloud-based systems and

consider not only the Amazon cloud, but also a Eucalyptus cloud. They report large fluctuations from
the mean performance for both systems. Their conclusion, similar to the other investigations, is that
most of the variability can be attributed to network communications. Wang and Ng (2010) investigate
the performance impact of network virtualisation specifically. Their results demonstrate that even under
favourable settings, the performance can vary significantly and unpredictably.
Variability of run time measurements is one of the main issues that Schad et al. (2010) consider. They run

experiments on the Amazon cloud and are able to identify two different performance levels that correspond
to the two different physical hardware specifications that provide the cloud infrastructure. They note that
there is considerable variation in the reported wall clock times and provide an in-depth analysis of the
various factors that affect performance.
Lenk et al. (2011) show that the performance indicators given by cloud computing providers are not

sufficient to determine the actual performance that a virtual machine will achieve. Some of the workloads
they use in their experiments are very similar to workloads in Artificial Intelligence research. They note
that starting two virtual machines of the same type may give different performance characteristics.

Our application comes directly from Artificial Intelligence research and does not consider network per-
formance variability at all. Most of the previous studies have concluded that network communications
are a significant factor that affects performance in practice, but the issue of variability without network
communications remains largely unaddressed.
The study with most similarities to ours is Schad et al. (2010). They have the same focus of assessing

the variability that virtualised hardware introduces into empirical measurements. They consider database
instead of Artificial Intelligence applications however. Furthermore, they only compare the performance of
physical hardware and virtualised hardware on Amazon cloud infrastructure. Our evaluation is significantly
more comprehensive, both in terms of evaluating more different clouds and virtualisation techniques as
well as a larger number of different virtual machine types in the Amazon cloud.

4 Methodology

We use the Minion constraint solver (Gent et al., 2006) in our investigation. Constraint solving is an area
of Artificial Intelligence where advances of the state of the art are demonstrated by empirical evaluations
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most of the time. The question of how variable reported results are is therefore highly relevant to this area.
No background knowledge in constraint solving is required; for an introduction see for example Dechter
(2003).
The Minion constraint solver suits the purpose of our investigation very well. It does not require any

network communication and very little disk access and enables us to assess the variability based only on
the virtualised processors. It is a state of the art system that has been used in academic and industrial
applications.
We assess the performance using three constraint problems. The choice of these particular problems was

motivated purely by the time they require to be solved – the first solves in a few seconds, the second in
approximately a minute and the third takes several hours to solve. This large spread in run times enables us
to assess both short-term and long-term effects. Short-term effects could be for example bursts of processor
cycles being available when the physical system is lightly utilised while an example of a long-term effect
is the general processing power provided by a virtualised processor.
The specific problems we used for the investigation are described below, in ascending order of run time

to find a solution. Note that for the purpose of this paper, it is not necessary to understand the nature of
these problems. We provide the description merely for the sake of completeness.

n-Queens Place n queens on an n × n chessboard such that no queen is attacking another queen. We
used n = 29.

Balanced Incomplete Block Design (CSPLib (Gent and Walsh, 1999) problem 28) A Balanced In-
complete Block Design (BIBD) is defined as an arrangement of v distinct objects into b blocks
such that each block contains exactly k distinct objects, each object occurs in exactly r different
blocks, and every two distinct objects occur together in exactly λ blocks. v, b, r, k and λ are given,
although b and r can be derived from the other parameters. We used v = 7, k = 3, λ = 70.

Golomb Ruler (CSPLib problem 6) For a given m, a Golomb ruler is defined as a set of m integers

0 = a1 < a2 < . . . < am such that the m(m−1)
2 differences aj − ai, 1 ≤ i < j ≤ m are distinct. Such

a ruler is said to contain m marks and is of length am, i.e. the position of the last mark. The length
is to be minimised. We used m = 13.

We used Minion version 0.12, which is available for download at its website1.
Each problem was run 100 times. There was no effort made to intersperse runs of different problems,

ensure optimal utilisation of the used processors or minimise external influences. This reflects the intention
of using the cloud as a drop-in replacement for physical hardware without any adjustments – experiments
are run as if the infrastructure was used exclusively for this purpose.
Our experiments serve two main purposes. First, to compare the variability of reported run times on

virtualised infrastructure to the variability on physical infrastructure. Second, to assess how the reported
run times vary across different virtual machines, different locations and different cloud providers.
We ran the experiments in the following four different settings.

• on three 8-core machines with non-virtualised hardware,

• on a Eucalyptus-based private cloud,

• on the public Amazon cloud and

• on the public Rackspace cloud.

The Eucalyptus cloud consisted of homogeneous hardware at the time when the experiments took place.
In particular, each virtual processor was backed by a physical processor. The operating system on the
physical hardware was CentOS Linux while on the virtual machines Ubuntu Linux was used.
For the Amazon cloud, we investigated the virtual machine types2 m1.large (2 processors), m1.xlarge (4

processors), c1.xlarge (8 processors) and m2.4xlarge (8 processors) in the US East (Virginia) region. In
each case, we provided 16 processors to run the experiments, i.e. 8 different virtual machines for m1.large
and 2 different virtual machines for m2.4xlarge. In the Rackspace cloud, we used instances with 2048

1http://minion.sf.net
2http://aws.amazon.com/ec2/instance-types/
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and 15872 MB of physical memory in the UK data centre. Each virtual machine had 4 processors and we
used them in groups of three to provide 12 processors in total. In the Eucalyptus cloud, we used 5 virtual
machine instances with 2 processors each. The amount of memory provided with each virtual machine was
sufficient to prevent swapping or similar behaviour.
Experiments run in all four settings allow us to compare the variability of virtualised and physical

hardware. The physical hardware establishes the baseline of reliability. Using several virtual machines
introduces an additional source of variation, but at this stage of the evaluation we are interested in the
reliability of experimental results that require a large amount of resources and therefore several machines.
For the purpose of evaluating the variability across different virtual machines and cloud providers, we

focussed on the publicly accessible Amazon and Rackspace clouds in a second set of experiments. On
the Amazon cloud, we used the additional cluster instance type cc1.4xlarge (8 processors) in the US
East (Virginia) region and the m1.xlarge, c1.xlarge and m2.4xlarge instance types in the EU (Ireland)
region. We did not use the smallest used type m1.large again. Each type of virtual machine was run 10
times. In most cases all 10 instances were started at the same time; however, a quota on the Rackspace
cloud prevented us from running all virtual machines at the same time and they were run in smaller batches
sequentially. Each virtual machine instance again solved all problems 100 times. No communication between
the instances took place.
Our aim was to conduct experiments in as many different locations and settings as possible, but ulti-

mately the scope of this investigation was limited by the cost of running the experiments.
For all setups, we used the Condor HPC system (Thain et al., 2005) regardless of whether a single machine

was used on its own or in a group with other machines. While this setup does cause network traffic in some
cases, it does not affect our measurements. We used the CPU times as collected and reported by Minion
itself, which ignores any overhead incurred by using Condor. Our basic Condor configuration instructed
it to use as many processors as a machine reports to the fullest extent regardless of any other activity on
the system.

The experiments were conducted throughout 2011 and the results reflect the hardware that provided
resources for the virtual machines at the time. The results do not necessarily reflect the performance of
the current cloud configurations, but we are confident that they can be used as a guideline.

5 Experimental results

First, we will present the results for the first set of experiments. The focus is to establish whether using
virtualised hardware has an intrinsic disadvantage over physical hardware in terms of variability. After that,
the second set of results will be described with focus on the variability across different virtual machines in
public clouds.
We use the normalised median absolute deviation as a measure of variability for the measurements in a

particular experimental setting. The median absolute deviation is the median of the absolute differences
of individual measurements from the median of all measurements. This number is normalised by dividing
it by the median of all measurements to make the figures comparable across experiments with different
median run times.
The motivation for using a measure based on the median average is that it will be able to characterise the

expected behaviour better than other measures that are based on the mean average, which is susceptible
to outliers. It is the expected behaviour that we are most interested in here.

5.1 Comparison to physical hardware

Table 1 presents the normalised median absolute deviations for all problems and machine types for the
first set of experiments. In general, the variation is larger for the problems that take only a relatively short
time to run. This is due to the fact that the operating system requires processing power for other tasks
that run at the same time as the experiments. These are usually short tasks that have only small effects,
but for short experiments the relative impact is larger than for experiments that take a long time to run.
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experimental setting n-Queens BIBD Golomb Ruler

non-virtualised 0.007 0.01 0.003
Eucalyptus 0.003 0.01 0.002
Amazon m1.large 0.205 0.13 0.011
Amazon m1.xlarge 0.13 0.175 0.034
Amazon c1.xlarge 0.073 0.019 0.029
Amazon m2.4xlarge 0.006 0.006 0.003
Rackspace 2048 MB 0.006 0.009 0.005
Rackspace 15872 MB 0.007 0.01 0.005

Table 1. Normalised median absolute deviation for the experiments of the first set on physical and virtualised hardware. The numbers were

rounded to three decimal places. The lowest figures for each problem are in bold.

We were surprised that the lowest variability for all problems was not achieved on the physical hardware,
but on virtual machines running in the cloud. In fact, for the n-Queens and BIBD problems, the best
variability improves over the variability we observed on physical hardware by a factor of two approximately.
This conclusively shows that there is no inherent disadvantage to running experiments in the cloud when
it comes to reproducibility of the results.
The normalised median absolute deviations across the three different clouds vary, but no cloud is consis-

tently better than the other ones. The Eucalyptus cloud seems to have a slight advantage with the lowest
variability on two out of three problems and the Rackspace cloud consistently exhibits larger variability
than the others.
Figure 1 shows the results for the first set of experiments in more detail. The machines that exhibit

the smallest variation also exhibit the best overall performance with the exception of the virtual machines
in the Rackspace cloud. The processors provided by this infrastructure are significantly slower than the
processors of almost all the other machines.
On the m1.xlarge instance type, some of the run times for the n-Queens and BIBD problems were

reported as 0. This is clearly incorrect and highlights the unreliability of such measurements on virtualised
hardware. This only occurred in a small number of cases however.
The figure also makes clear that for the Amazon virtual machine types with lower specifications exhibit

not only varying performance, but different levels of performance. The distributions show several peaks,
indicating the performance levels of the different virtual machine instances that the experiments were run
on. This is especially obvious in the distributions for machine type c1.xlarge. We ran the experiments
on two instances of that type to provide a total of 16 processors and the distributions show two peaks of
similar magnitude. Each of the m1.large and m1.xlarge virtual machine types provides fewer processors
and we had to run more instances to achieve 16. Hence the magnitudes of the peaks of the distributions
are different. The same effect does not occur on physical hardware and virtual machines with higher
specifications. Even though the experiments are running on multiple instances, the performance they
exhibit is consistent.

5.2 Comparison of virtual machine instances

After having established that the variability on virtualised hardware is not intrinsically higher than on
physical hardware, we now investigate the variability across virtual machines of the same type in more
detail.
Table 2 presents the normalised median absolute deviations for the second set of experiments. They are

similar to those presented in Table 1. We were surprised that the lowest variability for two problems was
achieved by a virtual machine type with relatively low specifications. This result is not consistent with the
other results though and may be due to a specific cloud configuration that is unlikely to occur in general.
Figure 2 shows more detailed results similar to Figure 1 for the first set of experiments. Again we observe

that the virtual machine types with low specifications exhibit more variability (with the exception of the
m1.xlarge type in Amazon’s EU region). In terms of absolute performance, the machines running in the
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Figure 1. Distribution of run times for all scenarios of the first set of experiments. The solid dot denotes the median, the bottom and
top of the boxes denotes the 25th and 75th percentile, respectively. The width of the shape denotes the number of measurements.

experimental setting n-Queens BIBD Golomb Ruler

Amazon m1.xlarge US East 0.094 0.049 0.007
Amazon m1.xlarge EU 0.005 0.007 0.003
Amazon c1.xlarge US East 0.055 0.042 0.051
Amazon c1.xlarge EU 0.024 0.039 0.011
Amazon m2.4xlarge US East 0.005 0.01 0.003
Amazon m2.4xlarge EU 0.008 0.007 0.003
Amazon cc1.4xlarge US East 0.015 0.012 0.011

Rackspace 2048 MB 0.008 0.008 0.005
Rackspace 15872 MB 0.006 0.006 0.005

Table 2. Normalised median absolute deviation for all experiments of the second set on the Amazon and Rackspace clouds. The numbers were

rounded to three decimal places. The lowest figures for each problem are in bold.

Amazon cloud again deliver better run times than the machines in the Rackspace cloud.
Especially the c1.xlarge machine type exhibits run time distributions that have several peaks again.

Even though 10 different virtual machines instances were used, there are only two peaks. This indicates
that two different configurations are used for the underlying physical hardware. The two peaks emerge
consistently across Amazon’s US East and EU regions. However, in general the distributions of run times
for an individual scenario and problem is much more akin to a Gaussian bell curve than in the first set of
experiments. This is probably because of the much higher number of measurements.
The cc1.4xlarge type in Amazon’s US East region exhibits a much larger variability of run times

and worse performance than we expected for an instance type of its specifications. Amazon note that the
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Figure 2. Distribution of run times for all scenarios of the second set of experiments. The solid dot denotes the median, the bottom
and top of the boxes denotes the 25th and 75th percentile, respectively. The width of the shape denotes the number of measurements.

target customer segment for this type includes researchers who need to run compute-intensive tasks. The
cc1.4xlarge type has eight virtual processors, but hyperthreading is enabled and instances report 16
processors. This means that our experimental setup ran 16 problems at once instead of eight that would
have corresponded to the number of virtual processors. This is likely the source of the high variability
and low performance. It indicates that researchers who are concerned about the repeatability of their
measurements should double-check whether technologies such as hyperthreading are enabled.
For a clearer picture of the performance of the cc1.4xlarge type, the experiments need to be repeated

with special provisions limiting the number of parallel runs to the number of virtual processors. Unfor-
tunately, we did not have sufficient financial resources to rerun the experiments on this very expensive
instance type.
Full details for all experiments are given in Figure 3. Each individual coloured box corresponds to

the measurement for an individual experiment. There are two effects on variability that can be easily
distinguished in this plot. The rows denote individual virtual machines instances and show performance
difference across different instances. The columns denote individual runs over time and show temporal
performance differences. The graph makes it obvious that both types of effects occur.
There are several scenarios where sets of virtual machine instances can be distinguished from another.

This occurs for example for the m1.xlarge type in the Amazon US East region and the c1.xlarge type in
the Amazon EU region. The Rackspace cloud appears to run on very homogeneous physical infrastructure;
the only occasion when a single instance stands out is for the BIBD experiments on the 15872 MB type.
In multiple cases, temporal effects can be seen. The performance of all virtual machine instances increases

towards the end of the experiments on the c1.xlarge type in the Amazon EU region for example. At this
point during the experiments, it is likely that not all of the processors were utilised for experiments because
there were fewer experiment runs than processors left. This is most likely the cause of the effect, although
it is surprising to see it so pronounced. This effect could be an indication that the physical processors are
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median = 9s, variation = −10% to 9%

Amazon
m2.4xlarge

US East

median = 39s, variation = −3% to 4% median = 21575s, variation = 0% to 1%

median = 9s, variation = −2% to 4%

Amazon
m2.4xlarge

EU

median = 39s, variation = −2% to 6% median = 21851s, variation = −1% to 1%

median = 14s, variation = −44% to 10%

Amazon
cc1.4xlarge

US East

median = 71s, variation = −20% to 6% median = 32875s, variation = −39% to 6%

median = 12s, variation = −8% to 5%

Rackspace
2048 MB

median = 63s, variation = −2% to 10% median = 27034s, variation = −1% to 4%

median = 12s, variation = −9% to 7%

Rackspace
15872 MB

median = 62s, variation = −2% to 10% median = 27072s, variation = −1% to 7%

Figure 3. Variation from the median of each scenario for all runs of the second set of experiments. Within an individual box, rows
represent different virtual machines and columns different runs. White denotes the median, shades of red slower than the median and
shades of blue faster than the median. Red and blue themselves represent the maximum variation for each scenario. Note that while the
rows are in temporal order (earliest experiment left and latest right), individual runs were not sequential but n in parallel, where n is

the number of processors on the machine. The variation refers to percent difference from the median.
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experimental setting n-Queens BIBD Golomb Ruler

m1.xlarge 0.046 0.071 0.179
c1.xlarge 0.044 0.035 0.048
m2.4xlarge 0.008 0.017 0.009

Table 3. Normalised median absolute deviation across Amazon US East and EU locations. The numbers were rounded to three decimal places.

shared with other virtual machine instances and the highest performance can only be achieved when the
virtual machine is underutilised.
The Rackspace 2048 MB type exhibits an interesting temporal pattern for the BIBD experiments. The

performance improves after an initial period, but decreases again for short periods in regular intervals.
This effect is so significant that it is most likely not caused by factors within the virtual machine instance,
such as other jobs run by the operating system, but by the overall load in the data centre that houses the
physical hardware. In some cases, this effect is very localised and does not only occur only for a short time
period, but also affects only a subset of the virtual machine instances. This is the case for example for the
Golomb Ruler experiments on the Rackspace 15872 MB type – a block of red shades in the lower middle
indicates a temporary decrease in performance.
In general, the virtual machines in the Amazon cloud seem to be better isolated against differences in

load on the physical infrastructure. The relative number of cases where such temporal effects occur is lower
and when they occur they consistently affect all virtual machine instances for longer periods of time. This
might not be because of a difference in virtualisation technologies though but merely because Amazon’s
data centres are larger and a much higher change in demand is required to change the load to a similar
extent.

5.3 Comparison of different locations

When evaluating the variability across several virtual machine instances of the same type, we also have to
consider the case where these instances are running in different locations or data centres. We are able to
perform this evaluation for virtual machines running in the Amazon cloud by comparing the performance
and variability of the same type of virtual machine in the US East and EU locations.
Table 3 shows the normalised median absolute deviations for the three virtual machine types that we

evaluated in both US East and EU locations. The variability is comparable to what we measured within
an individual location. The variability is significantly higher only in a few cases.
The graphs of the run time distributions in Figure 4 also show a picture that is similar to the one in

Figure 2. The variation is quite large for the m1.xlarge type, but there are no distinguishable separate
peaks in the distribution. For the c1.xlarge type, the range of the distribution is smaller, but at least for
the Golomb Ruler problem, there are clearly two separate peaks. The m2.4xlarge type has the smallest
variation. On close examination, two separate peaks are visible for the Golomb Ruler problem, but they are
very close and do not designate a performance difference that would have a significant impact in practice.
Details for all the results are given in Figure 5. In almost all scenarios, there is a clear difference between

the performance observed in the US East region and in the EU region. However, for both the m1.xlarge

and the c1.xlarge type, the differences observed within a location are more significant than the differences
across locations. In each case, a subset of the virtual machine instances running in one location can be
distinguished more clearly from other instances in the same location than from the instances in the other
location. This is especially obvious for the m1.xlarge type, where the full range of variation is observed
in the US East location whereas all measurements in the EU location are very close to the median.
For the m2.4xlarge instance type, the differences across locations are more significant than the differ-

ences within a location for two out of three problems. The differences are very small however, with a range
of only 3% of the median for the Golomb Ruler problem.
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Figure 4. Distribution of run times for different virtual machine types in the Amazon cloud across US East and EU locations. The
solid dot denotes the median, the bottom and top of the boxes denote the 25th and 75th percentile, respectively. The width of the

shape denotes the distribution of measurements.

6 Conclusions

We have presented a detailed and comprehensive evaluation and comparison of the variability of run
times for computational experiments on physical hardware and several different cloud environments. The
variability of run times is crucial to the reproducibility of results, which itself is a requirement of standard
scientific rigour. If reported performance improvements for an approach are less than the differences in
performance to be expected for individual experiments, the results will not be able to stand up to scientific
scrutiny.
The focus of this work is different from almost all previous work, which usually considers absolute

performance and not reliability or variability of results. In addition, we concentrate on experiments that
do not rely on high network performance, a major source of variability discovered by previous studies.
This case is more common in Artificial Intelligence.
Our comprehensive experiments show that there is no intrinsic disadvantage of running on virtualised

hardware over running on physical hardware. Both in terms of absolute performance and variability of
reported run times, the best results were in fact not achieved on physical hardware, but in a virtualised
cloud environment. This result is encouraging and we hope that it will facilitate the acceptance of cloud
environments as computational resources for researchers in Artificial Intelligence.
For running reproducible experiments in public clouds, we can unreservedly recommend either the

m2.4xlarge instance type in the Amazon cloud or both investigated instance types in the Rackspace
cloud. The variation of reported run times is comparable to physical hardware and measurements never
deviate more than about 10% from the median. For long-running experiments, the variation decreases even
further.
The m2.4xlarge virtual machine type in the Amazon cloud exhibits slightly lower variation than the
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median = 12s, variation = −62% to 54%

m1.xlarge

n−Queens

median = 51s, variation = −99% to 94%

BIBD

median = 28733s, variation = −27% to 34%

Golomb Ruler

median = 10s, variation = −86% to 31%

c1.xlarge

median = 50s, variation = −22% to 21% median = 25529s, variation = −4% to 16%

median = 9s, variation = −10% to 8%

m2.4xlarge

median = 39s, variation = −4% to 7% median = 21721s, variation = −1% to 2%

Figure 5. Variation from the median of each scenario for different virtual machine types in the Amazon cloud across US East and EU
locations. Within an individual box, rows represent different virtual machines and columns different runs. The top half denotes virtual
machines running in the EU region and the bottom half the US East region. White denotes the median, shades of red slower than the
median and shades of blue faster than the median. Red and blue themselves represent the maximum variation for each scenario. The

variation refers to percent difference from the median. Note that the top half of the boxes for the m1.xlarge instance type is not empty
– all measurements are very close to the median and therefore the colours are very close to white.

instances in the Rackspace cloud. In terms of absolute performance, it is significantly better. In general,
both performance and variability are more consistent in the Rackspace cloud however – there are huge
differences between different instance types on Amazon while there are almost no differences on Rackspace.
Even the worst variation between measurements of run time that we have observed in practice might not

render the virtual machine type unusable in practice if the change the researcher wants to demonstrate is
orders of magnitude and the results are averaged over several repeated measurements. For improvements
that are a small factor or less, the smaller virtual machine types in the Amazon cloud are not suitable
because of the large variations of the reported run times.
A more serious impediment to using the cloud for computational experiments in practice are the different

levels of performance different virtual machine instances of the same type can exhibit. This suggests that
a set of experiments should either be run on the same virtual machine instance or, if several instances are
used, care must be taken to ensure that they deliver the same level of performance. In any case, the ability
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of other researchers to replicate the results would likely be diminished.
The results of the comparison of the performance across different locations suggests that the variability

is not significantly higher than within a location. We were only able to compare two different locations
though. If possible, it is advisable to run experiments only within a single location and indicating this in
the description of the experimental methodology.

6.1 Cost

One of the major selling points of cloud providers is that instead of a large up-front investment in infras-
tructure, it can be rented as it is needed at a lower overall cost and commitment. While this is true for
researchers who run occasional small-scale experiments, groups running experiments more frequently or
large-scale experiments are probably better advised to make this up-front investment.
The total cost of running the experiments on the Amazon and Rackspace clouds in this paper would

have been more than US-$10,000. The same amount would have been able to buy and maintain several
state of the art servers to provide physical infrastructure for experiments.
Many of the experiments in the Amazon cloud used spot instances, which are usually much cheaper

than the standard instances. In some cases, there were large fluctuations of the price for spot instances
however. This not only diminished the advantage over regular instances, but also caused some instances
to be terminated automatically and prematurely as the price increased beyond the pre-set limit.
In terms of cost, the Rackspace cloud has an advantage over the Amazon cloud as it delivers a consistently

low variation even with small instance types that are cheaper than Amazon’s instance types with a similar
reliability. On the other hand, the Amazon cloud provides better absolute performance, both in terms of
processing power and maximum memory available in an instance type. It also provides greater flexibility
through more instance types and additional storage options.

6.2 Limitations and future work

The biggest limitation of this investigation is that we were able to evaluate the performance of virtual
machines in only two of Amazon’s currently seven regions and in only a single Rackspace region. In the
future, we would like to extend the investigation to more locations.
There are additional opportunities to increase the scope of this study. We have focused on CPU per-

formance, but for many applications, other factors such as disk access and network performance are also
important. These issues could be addressed in a future study.
Our results represent a snapshot of the cloud infrastructures at the time the experiments were conducted,

but do not inform conclusions on how this changes over time. It remains unclear whether the results
reported here would be confirmed by repeating the experiments a year later.
A possible solution to the problems we have described above would be for cloud providers to remove

some of the abstraction from the physical hardware and enable researchers to ask for virtual machines
running on specific physical infrastructure. This, together with an option to shrink-wrap virtual machine
environments, would represent a significant step forward for the reproducibility and accountability of
computational scientific experiments.
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