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Abstract—When solving a constraint satisfaction problem
using a systematic backtracking method, the branching scheme
normally selects a variable to which a value is assigned. In this
paper we refer to such strategies as eager branching schemes.
These contrast with the alternative class of novel branching
schemes considered in this paper whereby having selected a
variable we proceed by removing values from its domain. In
this paper we study such lazy branching schemes in depth. We
define three lazy branching schemes based on k-way, binary
and split branching. We show how each can be incorporated
into MAC, and define a novel value ordering heuristic that is
suitable in this setting. Our results show that lazy branching
can significantly out-perform traditional branching schemes
across a variety of problem classes. While, in general, neither
lazy nor eager branching dominates the other, our results
clearly show that choosing the correct branching scheme for a
given problem instance can significantly reduce search effort.
Therefore, we implemented a variety of branching portfolios for
choosing amongst all of the branching strategies studied in this
paper. The results demonstrate that a good branching scheme
can be automatically selected for a given problem instances
and that including lazy branching schemes in the portfolio
significantly reduces runtime.

I. INTRODUCTION

The traditional approach to solving a constraint satisfac-
tion problem (CSP) is based on depth-first search combined
with polynomial-time inference at each node in the search
tree [12]. While the CSP is well-known to be NP-Complete
in general, the research community has focused significant
efforts in studying alternative heuristics for selecting the or-
der in which variables should be instantiated, and heuristics
for choosing which value to use [2]. The objective of such
research is to improve the efficiency of search for particular
classes of CSP. Other recent work has studied the effect
of ordering heuristics and branching schemes on finding all
solutions [8].

The traditional branching schemes used when solving
constraint satisfaction problems (CSPs) are k-way, binary
and split branching. In each case a variable is selected for
assignment. In both k-way and binary branching schemes
a value is selected from the domain of the current variable
to assign to it, while in split branching the domain of the
current variable is restricted to half of its current domain.
We refer to such strategies as eager branching schemes.

In this paper we propose and study lazy versions of each
of the traditional branching schemes. In these schemes each

time a variable is considered, rather than selecting a value,
or several candidates as in the case of split branching, we
restrict its domain by eliminating one or more values. We
define three lazy branching schemes based on the eager
schemes mentioned above. We show a specific modification
of the MAC algorithm in each case to exploit the lazy
branching strategy used. We also propose a novel value
ordering heuristic that is appropriate for lazy branching.

The conventional wisdom is that such strategies are not
interesting because they increase the number of nodes in
the search tree, which has knock-on consequences for the
cost of propagation. However, our experimental results show
that lazy branching can significantly out-perform traditional
branching schemes across all performance metrics for a va-
riety of problem classes. While, in general, neither eager nor
lazy branching dominates the other, we show that depending
on the problem instance at hand that each can significantly
out-perform the other, i.e. that the set of branching strate-
gies we consider, both lazy and eager, are complementary.
Therefore, we implemented a variety of branching portfolios
for choosing amongst all of the branching strategies studied
in this paper. The results demonstrate that a good branching
scheme can be automatically selected for a given problem
instances and that including lazy branching schemes in the
portfolio significantly reduces runtime.

II. BACKGROUND

A CSP, P , is a triple (X , C, D) where X is a set of
variables and C is a set of constraints. Each variable X ∈ X
is associated with a finite domain, which is denoted by
D(X). We use n and d and e to denote the number of
variables, the maximum domain size, and the number of
constraints respectively. Each constraint is associated with a
set of variables on which the constraint is defined. We restrict
our attention to binary CSPs, where the constraints involve
two variables. A binary constraint CXY between variables
X and Y is a subset of the Cartesian product of D(X) and
D(Y ) that specifies the allowed pairs of values for X and Y .
Without loss of generality, we assume that there is only one
constraint between a pair of variables. A value b ∈ D(Y ) is
called a support for a ∈ D(X) if (a, b) ∈ CXY . Similarly
a ∈ D(X) is called a support for b ∈ D(Y ) if (a, b) ∈ CXY .

A value a ∈ D(X) is called arc-consistent (AC) if for
every variable Y constraining X the value a is supported
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Figure 1. Different branching schemes. The ordering over the values of
X is assumed to be a1, a2, a3, a4 and a5.

by some value in D(Y ). A CSP is AC if for every variable
X ∈ X , each value a ∈ D(X) is AC. We use AC(P) to
denote the CSP obtained after applying arc consistency. If
there exists a variable with an empty domain in P then P is
unsatisfiable and it is denoted by P = ⊥. Maintaining Arc
Consistency (MAC) after each decision during search is one
of the most efficient and generic approaches to solving CSPs.
A solution of a CSP is an assignment of values to all the
variables that satisfies all the constraints. A CSP is satisfiable
if and only if it admits at least one solution; otherwise
it is unsatisfiable. In general, determining the satisfiability
of a CSP is NP-complete. Solving a CSP involves either
finding one (or more) solution or proving that the CSP is
unsatisfiable.

A branching strategy defines a search tree. The well-
known branching schemes are k-way branching, binary
branching [12] and split branching. An empirical study of
these branching strategies is performed in [10]. In k-way,
when a variable X with k values is selected for instantiation,
k branches are formed. Here each branch corresponds to an
assignment of a value to the selected variable. An example
of k-way branching is illustrated in Figure 1(a), where a box
denotes a variable selection and an ellipse denotes selecting
and assigning a value to the selected variable. Here X is the
selected variable whose domain is {a1, a2, a3, a4, a5} and so
k = 5.

In binary branching, when a variable X is selected, its
values are assigned via a sequence of binary choices. If
the values are assigned in the order a1, a2, . . . , ak, then
two branches are formed for the value a1, associated with
X = a1 and X ̸= a1 respectively. The left branch
corresponds to a positive decision and the right branch

corresponds to a negative decision. The first choice creates
the left branch; if that branch fails, or if all solutions are
required, the search backtracks to the choice point, and the
right branch is followed instead. Crucially, the constraint
X ̸= a1 is propagated, before selecting another variable-
value pair. An example is illustrated in Figure 1(b), where
a box denotes a variable selection and an ellipse denotes
positive/negative decision.

In split branching, when a variable X is selected,
its domain is divided into two sets: {a1, . . . , aj} and
{aj+1, . . . , ak}, where j = ⌊k/2⌋. Two branches are formed
by removing each set of values from D(X) respectively. An
example is presented in Figure 1(c), where a box denotes a
variable selection and an ellipse denotes that reduction of
the domain by half. For simplicity sake, we focus on the
restricted versions of binary and split branchings where the
new variable is selected only after initializing the current
variable.

III. LAZY BRANCHING

Both k-way and binary branching are eager branching
schemes whereby, based on some heuristic measure, a value,
a, is selected and assigned to a selected variable, X . If the
values assigned to a subset of variables are involved in a
solution then the search is on the correct path. Otherwise,
it can thrash too many times before refuting the decision
x = a. When the refutation occurs in k-way branching a
new untried value is assigned to the variable whereas in
binary branching the same is done after propagating x ̸= a.
Split branching is less eager, since instead of assigning a
value to a variable, its domain is split into two mutually
exclusive subsets. Two branches corresponding to these two
subsets are formed and the variable is instantiated when a
subset contains only one value. Although split branching is
less eager, it is not completely pessimistic since the domain
is reduced to half in one shot.

We propose a lazy branching scheme. Instead of selecting
and assigning a value to a variable, we select and remove a
value from the variable’s domain, thus instantiating variables
lazily. For example, the assignment X = a1, is equivalent to
removing a2, a3, a4 and a5 progressively from the domain of
X . Figure 1(d) is an example of a very simple lazy branching
scheme. Each branch corresponds to an assignment of a
variable which is done lazily. Instantiating a variable lazily
may help in making better decisions, and may reduce the
number of failures/mistakes. For example, we might use a
value ordering heuristic to find a value that has the least
chance of being part of a solution, remove it from the domain
and propagate its effect. As search progresses, the value
ordering heuristic measure may change and thus may help
us make better decisions. We explain this with an example.

Figure 2 depicts part of the micro-structure of an instance
of a CSP in which an edge represents a pair of values that
are allowed by a constraint. Let us assume that only variable



  x1   x2   x3

  y1

  y2

  y3

  z1

  z2

  z3

  z4

  w1

  u2  u1   u3

  w2

  w1

  w3

  v1

  v2

  v3

(a) Before removing x3.

  x1   x2   x3

  y1

  y2

  y3

  z1

  z2

  z3

  z4

  w1

  u2  u1   u3

  w2

  w1

  w3

  v1

  v2

  v3

(b) After removing x3.

Figure 2. A micro-structure of a part of a CSP.

X is connected to the remaining part of the problem, which
is not shown in Figure 2(a), and each value of X has the
same number of conflicts with respect to the variables, which
are also not shown in Figure 2(a). Further assume that the
variable X is selected for instantiation and the heuristic
min-conflict is used to select a value. If an eager branching
scheme is used then X would be instantiated to x1 since the
sum of the min-conflicts with respect to variables U , Y , and
Z (which are 1, 1 and 2 respectively) is minimum. Notice
that when X is instantiated to x1 there does not exist any
satisfiable assignment for variables U , V and W . One can
easily think of scenarios where realizing this can be very
challenging for a systematic search algorithm. However, if
a lazy branching scheme is used whereby the max-conflict
value is selected and removed then the value x3 would be
removed and the result would be Figure 2(b). Notice that
before removing x3, the number of conflicts of x1 and x2

were 4 and 5 respectively, so x1 is preferred over x2. But
after removing x3 they are 3 and 2 respectively and therefore
x2 is preferred over x1. If there exists a solution involving
value x2 then one can save the effort spent in proving that
X = x1 cannot lead to a solution. Assigning variables lazily
might reduce the number of mistakes.

Another advantage of assigning variables lazily is that one
can infer dependencies between explicitly removed values
of the selected variable as a result of making (negative)
decisions, and the implicitly removed values of the selected
variable as a result of enforcing local consistency, such as arc
consistency when using the MAC algorithm. These depen-
dencies can be exploited to reduce the number of decisions.
For example, if a3 is removed from D(X) when arc consis-
tency is enforced after taking the negative decisions X ̸= a5
and X ̸= a4 in the first branch of Figure 1(d). One can infer
the following implication: X ̸= a5 ∧ X ̸= a4 → X ̸= a3.
This effectively means that there does not exist any solution
in the resulting subproblem after selecting variable X where

X = a3. Therefore, if the decision of instantiating X to a3
has not yet been tried, then there is no need to try it. Hence,
the third branch of Figure 1(d) can be avoided.

In Figure 1(d) there are many nodes that are common to
different branches and so they can be shared among them.
Below we show three different ways of factoring out the
common nodes, which lead to lazy versions of k-way, binary
and split branching schemes. By lazy k-way and lazy binary
branching we mean that the instantiation of a variable is done
lazily. By lazy split branching we mean that the domain
of the variable is split lazily. In the following sections we
describe these lazy branching schemes and assume that a
reverse lexicographic ordering is used for removing the
values from the selected variable.

A. Lazy k-way Branching

In Figure 1(d), the first two assignments of X (or
branches) have three nodes in common, the first three
assignments have two nodes in common and the first four
assignments have one node in common. Figure 3(a) is a
result of sharing them among different branches. The node
on the left branch corresponds to a negative decision X ̸= ai
and the node on the right branch is a decision of removing
values which have already been tried. More precisely, the
right branch is a set of negative decisions X ̸= aj such that
j < i, which results in the positive decision X = ai. Each
leaf node in Figure 3(a) corresponds to an assignment of X .
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Figure 3. Lazy k-way branching.

An inherent feature of k-way branching is that whenever a
decision, X = a, is proved to be false, X ̸= a is propagated
in each unexplored branch emanating after selecting X . For
example, when X = a1 is refuted, X ̸= a1 is propagated
in each subsequent branch emanating after selected variable
X in Figure 1(a). Notice that this feature is also present in
Figure 3(a). Therefore we call this lazy k-way branching.

In k-way branching, if k branches are explored after
selecting a variable, then each value is removed at most
(k−1) times, and in algorithms like MAC, the work required
for propagating the impact of removing a value is repeated.
This repetition is reduced in lazy k-way branching since the
nodes corresponding to some negative decisions are shared
over different assignments. Another advantage is that some
assignments can be avoided. For example, as explained in
previous section if X ̸= a3 is removed after propagating



X ̸= a4 and X ̸= a5 then X = a3 can be avoided.
The resultant tree for lazy k-way branching is shown in
Figure 3(b). The work of van Hoeve and Milano in [13]
can be seen as a specific case of lazy k-way branching if
the decisions are only postponed when there are ties among
the values.

Algorithm 1 presents pseudo-code to incorporate lazy k-
way branching in MAC algorithms. MACLK requires CSP
P and the current variable Y . If Y is null then a new
variable is selected (Line 2). After the current variable, X , is
determined, the domains are saved in D′ (Line 5). A value
v is selected and removed from D(X), and AC is enforced
(Line 5-6). If P is arc-consistent then the left branch is
created (Line 7-9). If X is not instantiated then MACLK

is invoked with the current variable X . The right branch is
created by restoring the domains to D′ and by initializing
X to v. As a result X will never be assigned any untried
value that is removed as a result of enforcing arc consistency
after making one or more negative decisions involving the
variable X .

B. Lazy Binary Branching

An inherent feature of binary branching is that when
a refutation occurs it is propagated before assigning any
other value to the variable. Each subsequent refutation is
shared over all the subsequent assignments. In Figure 1(d)
if X ̸= a1 is shared in the last four branches, X ̸= a2 is
shared in the last three branches, and X ̸= a3 is shared
in the last two branches then the result is a search tree as
shown in Figure 4(a). We call this lazy binary branching.
As before if a3 is removed from D(X) after propagating
X ̸= a5 and x ̸= a4 in the first branch then it can be
removed before exploring the subsequent branches which is
shown in Figure 4(b).

Algorithm 2 presents pseudo-code to incorporate lazy
binary branching in MAC algorithms. Lines 5-7 repeatedly
select and remove a value from the domain until the current
variable is uninstantiated and there is no domain-wipeout.
Each selected value is added to the set V . When the loop
terminates, the set V contains all the values that were
selected and removed and are not yet assigned to the variable
X . Notice that V does not contain any value that was

Algorithm 1 MACLK(P, Y )
Require: P : input CSP (X , C, D); Y : current variable
1: if X = ∅ then solution found and stop search
2: if Y = null then select and remove X from X
3: else X ← Y
4: D′ ← D
5: select and remove any value v from D(X)
6: P ← AC(P)
7: if P ̸=⊥ then
8: if |D(X)| = 1 then MACLK(P, null)
9: else MACLK(P ,X)

10: D ← D′; D(X)← {v}; P ← AC(P)
11: if P ̸=⊥ then MACLK(P, null)
12: D ← D′
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Figure 4. Lazy binary branching.

removed as a result of enforcing arc consistency in the left
branch. If the right branch is explored then D(X) is set to
V .

Algorithm 2 MACLB(P, Y )
Require: P : input CSP (X , C, D); Y : current variable
1: if X = ∅ then solution found and stop search
2: if Y = null then select and remove any variable X from X
3: else X ← Y
4: V ← ∅; D′ ← D
5: while P ̸=⊥ ∧|D(X)| > 1 do
6: select and remove any value v from D(X)
7: V ← V ∪ {v}; P ← AC(P)
8: if P ̸=⊥ then MACLB(P ,null)
9: D ← D′; D(X)← V ; P ← AC(P)

10: if P ̸=⊥ then
11: if |D(X)| = 1 then MACLS(P, null) else MACLS(P, X)
12: D ← D′

C. Lazy Split Branching

Another way of sharing nodes among different branches
of Figure 1(d) is to share the first three decision nodes
amongst the first two branches and last two decision nodes
amongst the last three branches. The result is shown in
Figure 5(a). This is called lazy split branching. Although
in split branching the assignment of a variable is also
done lazily: a subset of values are determined and removed
eagerly. In lazy split branching both the subset of values
that is removed from the domain and its cardinality are
determined lazily.

Pseudo-code for implementing lazy split branching in
MAC is shown in Algorithm 3. After the current variable,
X , is determined, a set V for storing negative decisions is
initialized to ∅, and the domains of the variables are saved
in D′ (Line 7). While |V | < |D(X)| and there is no domain
wipe-out, a value v is selected and removed from D(X), it
is added to the set V , and AC is enforced (Line 5-7). When
the loop is terminated and if no domain is empty then the
left branch is created (Line 8-9). The right branch is created
by restoring the domains to D′ (Line 10) and setting D(X)
to the set V , which is the set of values that were removed
earlier.

For example for Figure 5(a) the loop (in Line 5) is
terminated after the node X ̸= a3 (in the left branch). When
the algorithm backtracks it first removes all those values that
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Figure 5. Lazy split branching.

are already tried as assignments to the current variable, e.g.,
in Figure 5(a) X ̸= a1 ∧X ̸= a2 is enforced on the right
branch. The algorithm also removes all those values of X
that were removed while enforcing arc-consistency in the left
branch. For example, if a3 is removed when arc consistency
is enforced after the decision X ̸= a4 then X ̸= a3 is also
enforced in the right branch node as shown in Figure 5(b).
This is done in Line 11 of MACLS when D(X) is set to
V , which in this case contains only a4 and a5.

Algorithm 3 MACLS(P, Y )
Require: P : input CSP (X , C, D); Y : current variable
1: if X = ∅ then solution found and stop search
2: if Y = null then select and remove any variable X from X
3: else X ← Y
4: V ← ∅; D′ ← D
5: while P ̸=⊥ ∧|V | < |D(X)| do
6: select and remove any value v from D(X)
7: V ← V ∪ {v}; P ← AC(P)
8: if P ̸=⊥ then
9: if |D(X)| = 1 then MACLS(P, null) else MACLS(P ,X)

10: D ← D′; D(X)← V ; P ← AC(P)
11: if P ̸=⊥ then
12: if |D(X)| = 1 then MACLS(P, null) else MACLS(P, X)

IV. VALUE ORDERING FOR LAZY BRANCHING

Two well-known value ordering heuristics for eager
branching schemes that are based on the notion of support
are min-conflict [2] and promise [3]. The heuristic min-
conflict associates with each value of each variable the sum
of the number of values in the domains of the other variables
that are not supported. The values are then considered in
the increasing order of this count. The heuristic promise
associates with each value the product of the number of
supported values in the domain of each variable. The value
with the highest product is chosen subsequently. For a eager
branching scheme the value that has the highest chance of
leading search to a solution is selected and assigned to the
variable. But in a lazy branching scheme we want to select
and remove the value from a variable that has the least
chance of leading search to a solution. An adaptation of
min-conflict and promise for lazy branching schemes would
be max-conflict and anti-promise, respectively.

In k-way and binary branching when the min-conflict
value ordering heuristic is used, the number of conflicts

associated with a value indicates how many values will be re-
moved from the other domains, which is not necessarily true
for lazy branching schemes. The reason is that the values
of other domains that are in conflict with the removed value
might be supported by the other values of the same variable.
For example, let us assume that D(X) = {a1, . . . , a10} and
a1 and a2 have 5 and 7 conflicts in D(Y ) respectively. It
is possible that removing a1 from D(X) may remove more
values than removing a2 from D(X). This would happen
when a1 is supporting more values of D(Y ) for which
it is unique in D(X). Based on this idea we propose a
value ordering heuristic for lazy branching schemes. Let
unique(X,Y, a) =def |{b : |{(a, b) ∈ CXY }| = 1}| be
the number of values in D(y) for which a ∈ D(X) is
the only support in D(x). We select the value a ∈ D(X)
whose

∑
CXY ∈C unique(X,Y, a) is minimal. We call this

the min-removal value ordering heuristic.

V. EXPERIMENTAL RESULTS

Our experimental evaluation is two fold. First in Sec-
tion V-A we compare the performance of lazy and eager
branching schemes. The primary objective of these exper-
iments is to investigate whether lazy branching schemes
dominate, or are dominated by, eager schemes. We find that
both lazy and eager schemes can significantly out-perform
each other. Therefore, a second objective of our experiments
is to determine the extent to which lazy and eager schemes
are complementary. We find that if the branching scheme
corresponding to the best runtime for a given instance can
be chosen, the overall reduction in search effort can be
significant.

In Section V-B we develop a number of portfolios of
branching schemes that try to select the best branching
scheme for each instance. These experiments show that the
complementary nature of eager and lazy branching schemes
can be exploited in practice. Specifically, several portfolios
have performance comparable with selecting the best possi-
ble branching strategy for a given problem instance.

A. Comparing Eager and Lazy Branching

Throughout our experiments and branching schemes we
use dom/wdeg [1] as a variable ordering heuristic. We use
the min-conflict value ordering heuristic for eager branching
schemes and the min-removal value ordering heuristic with
max-conflict as a tie-breaker for lazy branching schemes, as
discussed earlier in this paper. Search effort was measured
in terms of visited nodes, failures and the solution time
in seconds. All algorithms were implemented in C. The
experiments were carried out as a single thread on Dual
Quad Core Xeon CPU, running Linux 2.6.25 x64, with 11.76
GB of RAM, and 2.66 GHz processor speed. We perform
experiments on the binary CSPs, however, the principle of
lazy branching is not limited to them.



Random Binary CSPs. We first experimented with Model
B random binary problems [4], where a random CSP in-
stance is characterised by (n, d, p1, p2), where n is the
number of variables, d is the uniform domain size of
each variable, p1 is the density of the graph, and p2 is
the tightness of a constraint. For each combination of
(n, d) ∈ {(20, 80), (30, 70), (40, 40) (40, 80), (50, 50)} and
p2 ∈ {0.65, 0.7, 0.75, 0.8, 0.85} we computed the critical
value of p1 and generated 20 instances. These experiments
clearly show that each scheme can be out-performed by
orders of magnitude by another. We do not present these
results in detail for space reasons.

We also generated a class of instances by merging a
Model B random instance with the structure depicted in
Figure 2. Thereby we created a set of instances in which
an early mistake during search would make search very
challenging. The results are shown in the first two rows of
Table I, where hc1 and hc2 denote that (40, 10, 0.93, 0.11)
and (50, 10, 0.81, 0.10) Model B random classes were used
to merge with the structure described before. Notice that lazy
branching can significantly out-perform eager branching.

Non-Random CSPs. We also performed experiments on
instances of balanced quasi-group with holes (qwh), quasi-
completion (qcp), modified radio-link frequency assignment
(rlfap), forced random binary (frb), queens attacking (qa),
geometric (geo) and dual encoding of 3-SAT problems (ehi)
that were used as benchmarks in the first CP solver com-
petition.1 Some results on which lazy branching performs
better than eager branching are shown in Table I.

Table II demonstrates the complementary nature of eager
and lazy branching. In this table, for each problem class, we
present the cumulative runtime required to solve all instances
in the class; the number of instances is given for each class.
For each scheme (k-way, binary and split) we present both
cumulative time for eager and lazy branching, along with the
cumulative time associated with picking the best runtime per
instance, in the oracle columns, corresponding to a choice
of the best branching scheme in each case. We highlight
the oracle time in bold when it is better than the best of
the two branching schemes, which demonstrates that they
complement each other.

We also present in the three right-most columns the
oracles for each of the eager, lazy and overall strategies.
These correspond to the cumulative time associated with the
best choice of the three eager strategies, the three lazy strate-
gies, or all six strategies, respectively. These results clearly
motivate the value, and complementarity, of both eager and
lazy branching schemes, and demonstrates that if one could
select amongst the six branching schemes presented in this
paper to each problem instance that significant performance
improvements would be observed. We tackle this question
in the next section.

1http://cpai.ucc.ie/05/Benchmarks.html

Table I
EXAMPLES OF INSTANCES ON WHICH LAZY BRANCHING OUTPERFORMS

EAGER BRANCHING.

k-way binary split
problem instance metric eager lazy eager lazy eager lazy

hc1
fails 1079410 38865 1214869 38055 1208956 35862
time 73.00 2.88 87.23 2.95 86.48 2.71

nodes 2015179 77779 2429754 81966 2417933 76386

hc2
fails 23M 182395 24M 171425 24M 157596
time 1940.79 16.76 2175.54 15.91 2163.81 14.44

nodes 44M 364845 49M 360033 49M 329590

qwh-o25-h235-b27
fails 5718055 2159983 2226450 2159983 2226450 2159983
time 255.03 91.73 96.54 94.10 97.929 93.09

nodes 10949267 4320004 4452933 4551590 4452933 4537049

qwh-o25-h235-b993
fails 90M 7M 91M 7M 91M 7M
time 5022.39 392.25 5058.77 402.64 5071.86 391.30

nodes 178M 13M 183M 14M 183M 14M

qcp-o20-h187-b217
fails 45M 248696 56M 248696 56M 248696
time 1737.26 12.91 2149.39 13.30 2146.02 12.08

nodes 87M 497418 112M 509371 112M 509079

qcp-o20-h187-b6
fails 897M 224M 1146M 224M 1146M 224M
time 31594.86 7576.98 39243.08 7839.63 39334.80 7590.79

nodes 1756M 449M 2293M 473M 2293M 471M

scen2 f25
fails 35425 18434 28340 9243 25609 10427
time 1.13 0.99 1.30 1.12 1.18 0.94

nodes 41279 36866 56678 52938 51216 34456

scen11 f7
fails 3047953 1774349 2558887 920263 2341643 1016562
time 73.00 61.27 88.36 88.30 79.34 68.17

nodes 3643215 3548696 5117772 5357476 4683284 3266799

graph2 f25
fails 13020 156769 173442 54649 225840 162809
time 0.27 4.44 4.31 2.42 5.72 5.84

nodes 16501 313536 346882 220284 451678 446554

graph9 f10
fails 21955 7524 20320 5694 19595 5720
time 0.96 0.43 1.04 0.56 1.03 0.48

nodes 29154 15046 40638 26833 39188 16461

frb40-19-5-bis
fails 108088 57564 104753 73214 105026 54856
time 6.14 3.72 6.65 5.63 6.76 3.99

nodes 174924 115166 209517 187345 210065 128149

frb50-23-5-bis
fails 2577022 107078 2493696 102227 2505655 106549
time 182.79 8.52 199.38 9.76 201.95 9.60

nodes 4181106 214210 4987408 265615 5011331 249779

qa 6
fails 855640 479928 747821 557990 733060 519875
time 20.32 11.83 16.98 16.24 17.23 14.22

nodes 1326441 959903 1495651 1637222 1466135 1269118

qa 7
fails 160M 135M 126M 131M 122M 129888725
time 5042.21 4846.26 4037.86 5345.11 3938.97 4792.47

nodes 245M 271M 253M 381M 245M 315M

geo50.20.d4.75.8
fails 35498 1237 34054 767 34893 1205
time 2.07 0.08 2.22 0.06 2.30 0.09

nodes 56685 2532 68126 2118 69812 2892

geo50.20.d4.75.90
fails 27570 11534 26625 11839 26573 11238
time 1.89 0.93 2.12 1.147 2.14 1.03

nodes 43075 23116 53264 31148 53168 26406

dual ehi-85-297-95
fails 1385 645 1714 1041 1432 1043
time 1.88 0.75 1.99 1.35 1.87 1.22

nodes 2518 1288 3426 2471 2862 2366

dual ehi-90-315-86
fails 1020 458 1040 385 1014 386
time 1.40 0.34 1.23 0.33 1.19 0.32

nodes 1832 914 2078 1004 2026 912

B. A Portfolio Approach to Branching Strategy Selection

With the current success of portfolio approaches in a
plethora of distinct fields [16], [6], [9], [11], there has been a
flux of research into how to most effectively decide the best
solver or approach to use for the instance at hand. There are
a number of different approaches. The three most prevalent
ones are as follows. Algorithm selection can be treated as
a classification problem, where the label to predict is the
solver to use. Alternatively, the training instances can be
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clustered and the best solver chosen for each cluster. The
third approach is to predict the runtime of each solver on a
particular instance using a regression model and choose the
solver with the lowest predicted runtime.

We investigate all three approaches. We converted each
instance of our non-random problem set into SAT using
the direct encoding [14]. In each case, we use the same 54
base SAT features as those used in SATzilla [15]. These
features take into account aspects of the problem such
as the number of variables, number of clauses, number
of variables per clause, the number of clauses a variable
typically appears in, the percentage of positive to negative
literals per clause, and various other measures. We evaluate
the performance of each approach on the three possible
portfolios – just the eager branching schemes, just the lazy
branching schemes and both combined – using ten-fold
cross-validation. The entire set of instances is split into
ten sets of roughly equal size. The combination of nine
of these sets is used for training and the remaining one
for testing. This process is repeated until every subset has
been used for testing. For branching scheme selection as a
classification problem we use the AdaBoost, BayesNet,
DecisionTable, IBk with 1, 3, 5 and 10 neighbours,
J48, JRip, MultilayerPerceptron, OneR, PART,
RandomForest, RandomTree and SVM with radial
basis function and sigmoid function kernels machine
learning algorithms. For clustering, we use ISAC [7]. For
the regression-based approaches, we use the algorithms
AdditiveRegression, GaussianProcesses,
LinearRegression, M5P, M5Rules, REPTree,
SMOreg and SVM with ε and ν kernels. For all algorithms
except ISAC, we use the Weka [5] implementations.

Table III shows the results for the three types of different
portfolios. We compare each portfolio on PAR10 score,
based on a timeout of 3600 seconds. We compute the mean
average over the PAR10 scores of all instances. For each
problem instance, we record the time it takes to solve it
using the chosen solver, or record ten times the timeout if
it was not solved. Also presented in the first two lines of
this table is the performance of the single best branching
strategy, and the performance of the oracle which selects
the best possible strategy on an instance-by-instance basis.

For both the eager and lazy portfolios, there is practically
no gap between the best single solver and the oracle. In
these cases, we are better off just sticking to only one
of the heuristics, as the potential benefits of choosing one
dynamically are very small. If the eager and lazy schemes
are combined into a single portfolio however, there is a
dramatic difference between selecting the same branching
scheme for all instances and choosing the best one. It is
clearly beneficial to attempt to dynamically select a branch-
ing strategy. The ‘combined’ column shows the performance
of different machine learning methods for selecting amongst
both eager and lazy branching schemes.



Table III
RESULTS ACROSS THE DIFFERENT PORTFOLIO APPROACHES. THE

PAR10 SCORES WHERE THE COMBINED PORTFOLIO BEATS BOTH THE
EAGER AND LAZY PORTFOLIOS ARE SHOWN IN BOLD.

PAR10 Score
eager lazy combined

single best strategy 431 426.3 431
oracle 428.5 425.2 303.2

AdaBoost 431 425.6 431.2
AdditiveRegression 430.6 425.8 311.4

BayesNet 430.4 425.7 364.4
DecisionTable 430.8 425.8 424.1

GaussianProcesses 431.5 426 368.4
IBk 1 430.5 425.9 306.5
IBk 3 431.6 426.2 363.7
IBk 5 431.6 425.6 362.5
IBk 10 430.1 425.7 420.9

J48 431.7 426.1 366.4
JRip 430.9 426.1 427.1

LinearRegression 432.8 426.2 425.8
M5P 432 426 429.1

M5Rules 433 426 425.6
MultilayerPerceptron 430.3 425.7 367.6

OneR 432.1 425.7 307.1
PART 431 426.3 365.5

RandomForest 430.6 426.1 364.5
RandomTree 431.1 426.2 362.9

REPTree 431.2 425.8 365.1
SMOreg 431.4 425.8 426.1
SVM rbf 431.3 426.1 369.4
SVM ν 431 425.6 425.6
SVM sf 431 426.3 431.7

ISAC 432.8 426 370.4
SVM ε 431 425.6 425.6

The performance data of the actual portfolios shows that
in the vast majority of cases, we are able to exploit the
difference between the single best heuristic and the oracle in
practice. There are a few cases where the combined portfolio
performs worse than just eager or just lazy, but keep in mind
that our approaches have not been tuned and the performance
could be improved. The reason for presenting many machine
learning algorithms is to demonstrate that this good behavior
is robust across a variety of learning methods. In general,
we can easily train a model to select algorithms from the
combined portfolio by applying existing techniques in a
more or less straightforward fashion.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed lazy forms of branching for solving
CSPs. Our experiments demonstrate the complementary na-
ture of eager and lazy branching, motivating the study of
machine learning-based approaches to selecting a strategy
for a given instance. We also explored a variety of machine
learning-based portfolios for selecting a branching strategy
for a given instance and showed that it is possible to
significantly out-perform the single best branching strategy.
This paper presents, for the first time, the practicality of
using lazy branching schemes when satisfying constraint
satisfaction problems. In this paper we have studied extreme
forms of branching schemes where either we remove 1 value
(lazy branching) or k−1 number of values (eager branching).

In future, we would like to investigate more general forms of
branching schemes where it is possible to adapt the removal
of number of values between 0 and k.
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