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Abstract
The optimization of decentralized energy systems is an important practical problem that
can be modeled using stochastic programs and solved via their large-scale, deterministic-
equivalent formulations. Unfortunately, using this approach, even when leveraging a high
degree of parallelismon large high-performance computing systems, finding close-to-optimal
solutions still requires substantial computational effort. In thiswork,wepresent a procedure to
reduce this computational effort substantially, using a state-of-the-art automated algorithm
configuration method. We apply this procedure to a well-known example of a residential
quarterwith photovoltaic systems and storage units,modeled as a two-stage stochasticmixed-
integer linear program.Wedemonstrate that the computing time and costs can be substantially
reduced by up to 50% by use of our procedure. Our methodology can be applied to other,
similarly-modeled energy systems.
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1 Introduction

With the expansion of renewable energy sources (RES) around the world, decentralized
energy systems play an increasingly important role (Altmann et al. 2010; Owens 2014;
Velik and Nicolay 2016; Yazdanie et al. 2016; Kobayakawa and Kandpal 2016; Schwarz
et al. 2018b). Planning and implementing these systems in an optimized fashion is therefore
becoming more prominent. Since electricity generation from RES is fluctuating and uncer-
tain, in particular in the case of wind power and photovoltaic (PV) systems, a high temporal
resolution is required. For real energy systems, this results in large-scale optimization prob-
lems which are difficult to solve in practice. Furthermore, the decentralization of the energy
system introduces non-negligible uncertainties on the supply side. To meet these challenges,
different analytic and computational techniques fromOperations Research (OR) can be lever-
aged (Andriosopoulos et al. 2016). Stochastic Programming is an OR technique that enables
an adequate consideration of various uncertainties (see, e.g., Dantzig 1955; Prékopa et al.
1980; Wallace and Fleten 2003; Beraldi et al. 2008; Kuznia et al. 2013). In order to solve a
stochastic program computationally, the problem is described by its deterministic-equivalent
formulation, where a set of scenarios represent the uncertain conditions. This typically results
in programs that are much larger than the original and very expensive to optimize (Fragnière
et al. 2000). Such optimization techniques are commonly used to tackle real-world problems
(see, e.g., Ben-Ayed et al. 1992; Zokaee et al. 2017; Khalilpourazari and Arshadi Khamseh
2017).

Recently, techniques from Artificial Intelligence (AI) have gained traction in optimiz-
ing the process for solving such difficult problems (see, e.g., Hutter et al. 2010). They can
be applied to systems that expose parameters affecting their performance and intelligently
change those parameters to reduce the time it takes to solve the problem. In many cases, these
optimized parameter settings generalize, i.e., it is sufficient to run this automated configura-
tion process on a subset of the problems that are to be solved, and simply apply the result to
similar problems to be solved subsequently.

In this work, we consider a specific real-world decentralized energy system as a case study
for automated configuration: the optimization of a residential quarter with a PV system, heat
pumps and heat storage units (Schwarz et al. 2018a). Since the optimal implementation of an
energy system depends predominantly on the investment at the first stage and on their oper-
ation at the second stage, the problem is formulated as a two-stage stochastic program with
recourse. To keep the programwithmore than 100million variables computationally feasible,
the problem is decomposed by fixing the first-stage variables of the program and optimiz-
ing them iteratively with a derivative-free optimization (DFO) approach. The sub-problems
at the second stage are solved in parallel on a high-performance computing (HPC) system
using the commercial MILP solver CPLEX. At each step of the DFO process, thousands
of sub-problems are solved by CPLEX. The default parameter configuration of the solver
is unlikely to provide the best performance for all of these problems (see, e.g., Hutter et al.
2010). We therefore automatically determine sub-problem-specific parameter configurations
using the state-of-the-art algorithm configuration tool SMAC (SequentialModel-basedAlgo-
rithm Configuration, Hutter et al. 2011). There are similar approaches in the literature but
they are less general and comprehensive. Avdoulas et al. (2018) use genetic algorithms to
optimize the parameters of their model, but require heavy customization of the tuning pro-
cedure. Similarly, Talbi (2016) uses meta-heuristics, but their procedure is also not generic.
Pintér (2017) proposes an approach to find optimized general parameter settings, but does not
apply this approach beyond artificial benchmark problems. To the best of our knowledge, our
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paper is the first to demonstrate automatic configuration of a MIP solver to be effective on a
real-world problem of the magnitude considered here. The main contribution of this work is
the description of a general procedure to improve the solution of energy system optimization
problems (modeled as stochastic programs) by using automated algorithm configuration,
including a discussion of the rationale behind the achieved performance improvements.

The remainder of this article is structured as follows. Section 2 provides background on
automated algorithm configuration. The real-world stochastic optimization problem consid-
ered in our work is presented in Sect. 3. The automated performance optimization approach
we employ here is described in Sect. 4, and the results achieved by it are presented in Sect. 5,
followed by further discussion in Sect. 6. We conclude with a summary of our findings and
point out several avenues for future work in Sect. 7.

2 Automated algorithm configuration

Most modern software systems, such as the CPLEX solver we use here, expose a multitude of
parameters to the user. The default values of these parameters usually do not provide optimal
performance (see, e.g., Atamtürk and Savelsbergh 2005). Configuring them on a case-by-
case basis is imperative to be able to solve problems quickly and efficiently (see, e.g., Hutter
et al. 2010). Unfortunately, the space of possible parameter settings is vast, and there is
little theory to guide the setting of such parameters for a given problem. Therefore, in most
applications of CPLEX and similar highly parametric solvers, default parameter settings are
used or custom parameter settings are determined in an ad-hoc manner with tedious manual
experimentation.

Automatic algorithm configuration techniques fromAI provide an effectiveway of solving
this problem (see, e.g., Hutter et al. 2007, 2011). Instead of manually experimenting with
different parameter settings, the user only specifies the target algorithm (i.e., the algorithm
whose performance is to be optimized), the parameter space (defined through the names of the
parameters and their permitted and default values), a set of representative problem instances,
and a performance metric. Then the automated procedure does the rest: it intelligently and
efficiently selects and evaluates promising candidate parameter settings, with the goal of
optimizing the given performance metric. The general approach is depicted in Fig. 1.

Automatic algorithm configuration approaches treat the target algorithm as a black box, in
that theydonot require knowledgeof its innerworkings; instead, they evaluate its performance
by observing it empirically and use the information gathered in this way to find better-
performing parameter settings. This is a great practical advantage of this approach—users

Fig. 1 Automated algorithm configuration (Hutter et al. 2010)
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do not need to be CPLEX experts, as is the case for most practitioners who use CPLEX
to solve problems in their specific domain of expertise. Automated configuration can be
applied by users with no background in the used AI techniques. Hence, this is a powerful,
domain-independent approach that provides the ability to improve empirical performance
for all potential users, regardless of their background.

A simple approach to algorithm configuration is to evaluate a very large number of
different configurations, either chosen systematically to cover the given configuration space,
or sampled randomly. For target algorithms with a very large configuration space, such as
CPLEX in our application, this is usually infeasible because of resource constraints. Instead,
state-of-the-art model-based algorithm configuration methods approximate the parameter-
performance response surface with a so-called surrogate model (see, e.g., Hutter et al. 2011).
The surrogate model is cheap to evaluate and provides predictions of how the target algorithm
will perform for parameter settings that have not been evaluated. An acquisition function
uses these predictions, along with the uncertainty associated with them, to propose the next
configuration onwhich to evaluate the target algorithm. This configuration iswhere themodel
predicts the highest potential for performance improvement, taking into account both the
performance of past configurations and the uncertainty associated with unexplored configu-
rations. In this way, the procedure naturally tends to explore more diverse configurations at
the beginning, when uncertainty is high, and focuses on the most promising areas of the con-
figuration space as more and more data is gathered and uncertainty decreases. The surrogate
models used by such sequential model-based optimization (SMBO) procedures are induced
using machine learning methods, based on the performance of the target algorithm evaluated
on a relatively small number of configurations. SMBO iterates between fitting surrogate
models and using them to make choices about which configurations to evaluate. Procedures
that are based on the results of SMBO or the surrogate models can also be used to quantify the
importance of each parameter and parameter interactions (Hutter et al. 2011). Altogether, this
provides a principled way to intelligently and efficiently explore large configuration spaces.

After each evaluation, the new information on the actual performance of the target algo-
rithm with the proposed configuration is incorporated into the surrogate model, and the
acquisition function predicts the next configuration to be evaluated; this informs the sequen-
tial behavior. The process stops when a user-specified configuration budget is exhausted. The
approach provides a solution at any time: the incumbent configuration can be retrieved at
each step of the process.

A large body of existing research has been devoted to this problem; a comprehensive
survey is beyond the scope of this article. Further information can be found, for example, in
Jones et al. (1998), Hutter et al. (2009), Ansótegui et al. (2009), or Mascia et al. (2014).

SMAC is a state-of-the-art automatic algorithm configurator based on the SMBOapproach
(see Hutter et al. 2011 for details). We decided to use it in this work because it is known
to perform well on a broad range of algorithm configuration tasks, is readily available, and
relatively easy to use. Alternative SMBO-based configuration procedures include the Tree-
based Parzen Estimator (TPE) (Bergstra et al. 2011) and Spearmint (Snoek et al. 2012).
However, it has not been shown that either of those would reach or surpass the performance
of SMAC when configuring CPLEX.
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3 Problem description

We demonstrate the automated algorithm configuration methodology described above and,
specifically, SMACon the real-world case studyof a decentralized energy system.This system
can be modeled as a two-stage stochastic MILP, as explained in the following Sects. 3.1 and
3.2. As it is not feasible to solve the program on a single machine, the problem is decomposed
into sub-problems and solved in parallel on the HPC system described in Sect. 3.3. The
application of SMAC and the differences between the optimized configuration and the default
configuration of the MILP solver are analyzed with respect to the most important parameters
in Sects. 4 and 5.

3.1 Residential quarter as a decentralized energy system

Energy systems are considered decentralized when a portion of the energy required to sat-
isfy demand is produced on-site, within the boundaries of, or located nearby and directly
connected to, a building, community or development (Wolfe 2008). The residential quarter
in our case study pools multi-family and row houses with 70 residential units into a living
and energy community on 7708 m2 for up to 180 residents (see Schwarz et al. 2018a). The
quarter has photovoltaic (PV) generators and can handle flexible load through heat pumps
and thermal storage units. The planning task is to determine the optimal capacities of the
storage units and their operation under weather-related uncertainties of the electrical and
thermal demand as well as energy supply. Figure 2 depicts the energy setup of the quarter.

On the supply side, there is a PV system of 240 kWp installed, providing power between
0 and up to approximately 200 kWel. If the PV supply is insufficient, electricity can be pur-
chased from an external energy supplier at a given tariff. On the demand side, 70 households

power cold water hot water G: amount of building groups within quarter
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Fig. 2 Energy setup of the residential quarter (Schwarz et al. 2018a)
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are clustered into G � 4 building groups, each with a fluctuating, uncertain demand of
electricity, domestic hot water, and space heating. To cover the heat demand, each building
group is equipped with heat storage units in combination with two air–water heat pumps that
can provide heat at half or full load up to 120 kWth, depending on ambient air temperature.
Additional heating elements in the storage units ensure that the thermal demand can be cov-
ered during peak times and provide a disinfection function. The heating system is separated
into two cycles: the closed cycle for space heating runs at lower temperatures than the one
for domestic hot water, resulting in a higher coefficient of performance (COP) of the first
heat pump and lower heat losses of the storage. The target temperature is assumed to be
35 °C and can drop by approximately 10 Kelvin below this target. For the domestic hot water
requirements, fresh water is obtained from an external water supplier and heated by a second
heat pump in an open loop from about 10 to 50 °C.1

3.2 Modeling of decentralized energy systems as two-stage stochastic MILP

In order to determine the optimal storage size that leads tominimal energy system costs under
uncertain conditions, the residential quarter is modeled as a two-stage stochastic program
(for a compact introduction to stochastic programming, see Prékopa 1995; Shapiro et al.
2009). The objective function of the program is defined as:

costs � min
cg,i ,e

grid
ω,t ,e f i

ω,t

AN F ·
G�4∑

g�1

k1∑

i�1

costi · cg,i

+1

N
·

N�100∑

ω�1

T �35040∑

t�1

(
pgrid · egrid

ω,t − p f i · e f i
ω,t

)
. (1)

At the first stage, the capital cost of each investment for building group , such as the storage
for space heating and for domestic hot water, is converted into an equivalent series of uniform
amounts per period. The lifetime of the investment and an alternative investment opportunity
at a certain interest rate of the fixed capital is taken into account by the annuity factor ANF.
In this case study, a technical lifetime of 20 years is assumed, with an interest rate of 10%.
At the second stage, the energy costs of each scenario ω � {1, . . . , �} are computed at each
time step t by the energy obtained from the external grid egrid

ω,t at price pgrid , minus the

energy fed into the grid e f i
ω,t at feed-in tariff p f i . The period t � {1, . . . , 35,040} comprises

1 year, with a temporal resolution of 15 min time steps. In total, the optimization is carried
out for 100 scenarios generated by a Markov process.2 An essential constraint of the system
is that the electrical and thermal demand and supply are balanced at any time. The thermal
supply in the system is limited by heat pumps plus heating elements and heat storage units.
The heat pumps can only run stepwise at idle, half or full load, while the heating elements
can modulate their heat output on a continuous scale. The storage levels connect the states of
time step t to step t + 1 and result in a complex stochastic MILP. The entire program is listed
in “Appendix A”. For further information about the program and the scenario generation,
see Schwarz et al. (2018a).

1 Note that the higher temperature difference results in a larger energy content at the same volume compared
to storage units for space heating.
2 Markov processes have proven suitable to generate PV generation and energy demand of the decentralized
energy system that depend essentially on fluctuating and uncertain meteorological parameters (see Schwarz
et al. 2018a, b for details).
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Fig. 3 Optimization approach of the two-stage stochastic MILP (Schwarz et al. 2018a)

3.3 Initial optimization approach with default configuration

The sub-problems of the two-stage stochasticMILP are solved in parallel by explicitly setting
first-stage variables. The sub-problems are solved by CPLEX for given first-stage variables
that are optimized iteratively by an outer DFO. The entire optimization procedure is depicted
in Fig. 3.

The first-stage variables, i.e., the storage capacities as inter-scenario connections, are
optimized using the steepest-ascent hill-climbing DFO algorithm (Taborda and Zdravkovic
2012). In order to minimize the costs, the storage capacities for space heating and domestic
hot water of each building group are altered sequentially by a positive and negative step size
si . The costs are minimized for each altered storage capacity, and the step with minimal costs
is accepted. When there is no improvement in terms of the objective function, the step size
is halved. This process is repeated until the relative change of the objective function value is
smaller than 0.1%.

The DFO in the first stage allows the problem to be decomposed into N � 100 sub-
problems (one for each scenario). By fixing the storage capacities that connect the time steps
of the period t � {1, . . . , T }within a scenario, each scenarioω can be decomposed over time
t : the 1-year period of a scenario is decomposed into periods of 2 weeks, resulting in M � 27
sub-problems per scenario.3 Hence, 4·N ·M � 10,800 sub-problems for each building group
need to be solved for a storage capacity given by the outer DFO; the factor 4 stems from
the number of positive and negative steps for the storage of space heating and domestic hot
water. The sub-problems are solved using CPLEX (version 12.6.2) with a MILP gap of 0.6%
and a cutoff-time of 1 800 s, so that the hill-climbing approach efficiently progresses to the

3 The scenarios are further decomposed, because one scenario cannot be solved within 48 h for a MILP gap
of 0.6% on a single computer. The intra-scenario connecting storage levels are not optimized by the DFO, but
set to reasonable levels resulting in a negligible difference to the optimum of less than 1%.
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optimum.4 The sub-problems are solved in parallel on a HPC cluster. Even when using the
HPC system, the initial optimization process requires more than a week of wall-clock time
for just one building group.

4 Methodology

The applicationofSMACto the integratedMILP solver is described inSect. 4.1.Our approach
to analyzing the differences between the optimized configuration (obtained from SMAC) and
the default configuration of the MILP solver is outlined in Sect. 4.2.

4.1 MILP solver configuration using SMAC

To improve performance, we partition the sub-problems, select problem instances for each
partition, and apply SMAC to each of these groups of instances to find optimized parameter
settings. Partitioning the sub-problems is necessary, because they are structurally different
and we expect different configurations to be most suitable for each. By applying SMAC
to each partition individually, we allow for partition-specific configurations that result in
a higher overall performance. Equally, an appropriate, representative selection of training
instances is important to enable finding a well-performing solver configuration for the entire
partition.

As the sub-problem with the longest runtime provides a lower bound of the running
time of each hill-climbing iteration, the most difficult instances are selected for each group.
Improvements on these instances will achieve the highest performance improvements for the
overall method. The first choice are sub-problems that are not solved by the default CPLEX
parameter configuration within the given cutoff-time of 1800 s, the second choice are sub-
problems that are solved successfully, sorted by running time in descending order. In practice,
we found it beneficial to apply an iterative approach, where we run SMAC on a small number
of instances first and use the optimized configuration from this step as a starting point for
running SMAC on the full set of instances. The complete procedure is illustrated by the flow
chart in Fig. 4. Details specific to the optimization of the residential quarter are shown in
italics on the right side of Fig. 4.

The partition-specific optimized configuration is used for optimization of the energy sys-
tem of the residential quarter. The training phase of SMAC and the MILP solving process
must be executed on the same computer system (the SMAC training and the CPLEX solving
process are executed on a Linux-based HPC cluster using 512 CPU cores with two threads
at 2.6 GHz and 16 GB RAM per core). If the resulting performance gain is not sufficient,
the procedure is repeated with a finer partitioning. Usually, finer partitions lead to better
improvements but make the configuration phase more expensive due to a higher number of
partition-specific parameter configurations that need to be found.

4.2 Ablation analysis

To analyze optimized configurations, ablation analyses (Fawcett andHoos 2016) can be used.
Ablation analysis assesses the effect of each parameter that differs between two configurations

4 The MILP gap is set to 0.6%, because we observed no improvement of the sub-problem solution quality in
practice after several days of additional computing time; this is almost always achieved within 1800 s.
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The sub-problems are partitioned into 27 parts, as each 
scenario is decomposed into periods of 2 weeks, where 
partition 1 represents week 1 and 2 of period t={1,…,T}, 
partition 2 represents week 3 and 4, and so on. Partition 
27 presents the last part of the one-year period which 
remains as only 1 day.

Overall, 9 instances per partition are selected, where 8 of 
9 difficult instances cannot be solved by the default 
CPLEX parameter configuration with a given MILP gap of 
0.6% and a cutoff-time of 1 800s. One instance is 
chosen randomly to avoid finding configurations that are 
too specific to difficult instances and do not perform well 
on computationally easy instances.

SMAC is initially applied to 3 difficult instances for each 
partition (total configuration time of 24h per partition on 1 
separate CPU core). The mean wall-clock time on these 
instances is minimized. Unsuccessful runs that could not 
be solved within the cutoff-time of 1 800s are counted as 
having taken 18 000s (i.e., 10 times the cutoff).

SMAC is run on the 9 difficult instances from Step 2 per 
partition on 1 separate CPU core  (total configuration 
time of 72h per partition on 1 separate CPU core).

Execution details of the procedure for the case study

Fig. 4 Automated algorithm configuration procedure of CPLEXusing SMAC.On the right side, specific details
of the procedure for the residential quarter are shown in italics. (The final optimized configuration of most
partitions is already found after a total configuration time of 24 h, only 5 transition partitions require the full
time of 72 h on 1 separate CPU core.)

on the target algorithmperformance in order to identify themost impactful parameter changes.
Given a default and an optimized configuration, this is done by changing the value of one
parameter at a time to determine what part of the performance difference between the two
configurations it accounts for. This process moves incrementally from one configuration to
the other and thus takes into consideration interactions between parameters; it proceeds in a
greedy fashion, determining in each iteration the largest possible performance improvement
and the parameter responsible for it. Ablation analysis determines which parameters are most
important to achieve improved performance and which have little or no effect in a particular
configuration scenario.

5 Results

We present computational results for our automatic configuration approach in Sect. 5.1,
presenting the average reduction in running time of the problem described in Sect. 3. We
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Fig. 5 Wall-clock time for the sub-problems (MILP gap�0.6%, cutoff-time�1800 s) for a the default con-
figuration and b the optimized partition-specific configurations obtained from SMAC

use ablation analysis to determine the three most important parameters in reducing running
times as described in Sect. 5.2. The temporal andmonetary gain of using automated algorithm
configuration, depending on computing parallelization, is revealed in Sect. 5.3.

5.1 Reduction in running time

We use 27 different partition-specific CPLEX configurations determined by SMAC for the
inner optimization of the previously described MILP sub-problems. In total, six outer hill-
climbing iterations are needed to find optimal storage capacities for one building group. The
mean wall-clock time of all 54,000 computations is reduced substantially, from 947 s to
493 s, by using the optimized configurations.5 The Tukey boxplot shown in Fig. 5a illustrates
this difference.6 Even more drastically than the mean, the median running time drops from
1 631 s to 168 s, while the upper quartile is reduced from 1800 to 509 s. The deviation between
the mean and the median of the default case is due to the skewness of the wall-clock time
distribution: the sub-problems tend to be solved either quickly or towards the end of the given
cutoff-time of 1 800 s. Approximately one in six sub-problems is not solved, but achieves a
MILP gap of 1% or less, which still provides a reasonably accurate basis for the hill-climbing
approach. For the optimized configurations, the deviation between the mean and the median
is mainly caused by outliers corresponding to unsuccessful runs. In comparison to the default,
30% more sub-problems are solved.

Figure 5b provides more detailed results for the 27 partitions and shows that the biggest
improvements are achieved for the transition seasons (partitions 5–11 and 20–23). These
sub-problems are more complex than those for the winter (partitions 1–4 and 24–27) and
summer season (partition 12–19), for which little or no reduction of running time could be
achieved. In summer, the space heating demand is zero and, accordingly, the heat pump is
turned off. The integer variables of this heat pump can be set to zero, which simplifies the
optimization task. In winter, the PV supply minus the electricity usage of the households

5 There are four storage capacities that do not require optimization. Therefore, only 54,000 sub-problems are
solved, instead of 64 800 (=4 storage capacities per iteration times 27 parts per scenario× 100 scenarios times
6 iterations).
6 The ends of the whiskers represent the lowest wall-clock time within the 1.5 interquartile range (IQR) of
the lower quartile, and the highest wall-clock time within the 1.5 IQR of the upper quartile. Outliers are not
shown.
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is low or even zero. Consequently, the potential for profitable load shifting is lower than
in transition seasons, which also simplifies the optimization task. The wall-clock times for
solving the winter and summer sub-problems are much lower than those of the transition
sub-problems for the default configuration. Thus, the potential wall-clock time reduction is
higher for more complex sub-problems in the transition seasons: there is a wall-clock time
improvement of 1 403 s within the 0.75 quantile. The negative lower quartile shows that the
optimized configuration, which is based on nine of 100 instances per partition, can lead to
worse performance on some sub-problems. More training instances or a finer partitioning
could remedy this issue, but would increase the resource requirements for the automatic
algorithm configuration process.

5.2 Importance of parameters in reducing running times

The path of improvements (ablation path) shows the reduction of the mean wall-clock time
for the nine selected instances per partition. It is important to note that this path is not the one
followed by SMAC, but the optimal improvement path determined by ablation analysis post
hoc. For each partition, 20–50 CPLEX parameters differ between the default and the final
optimized configuration obtained from SMAC. The mean wall-clock time for solving the
selected instances across all partitions with the default configuration (P-0_Default) is 1 556 s
and is reduced to 481 s by the optimized configuration (P-All_SMAC). Note that these values
differ from the wall-clock time improvement in Sect. 5.1, as not all computations of the sub-
problems, but only the nine selected instances per partition are considered. Figure 6 shows
the path of improvements for all 27 partitions: beginning from P-0_Default, over the first
three most effective parameter adjustments P-1, P-2, and P-3 and ending with P-All_SMAC.
For each partition, the improvement paths are shown uniformly for the seasons of transition
(dotted red line), winter (solid black line) and summer (dashed orange line).

Figure 6 shows that similar problems, i.e. instances of the same season, tend to show
similar ablation paths. However, within the winter, summer, and transition partitions, there
is still a notable difference of improvements, indicating that a finer segmentation into 27
partitions may achieve further improvements. In particular, the wall-clock time of partitions
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Fig. 6 Improvement paths for all 27 partitions (mean wall-clock time for the 9 selected instances) for the
optimized configuration for the three parameters with the highest effect and the final configuration obtained
from SMAC. (The default configuration (P-0_Default) has a lower mean wall-clock time of 477 s on partition
27 because of the lower time horizon of 1 day compared to 2 weeks for the other partitions.)
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Table 1 The three parameters with the highest impact on wall-clock time leading to a total relative reduction
of 40% (descriptions of the parameters are obtained from the CPLEX User’s manual IBM 2016)

Parameter name Description Avg. reduction (total rel.
reduction)

1. MIP strategy rinsheur Sets the frequency to apply the
relaxation induced
neighborhood search (RINS)
heuristic

618 s (27%)

2. MIP strategy nodeselect Rules the selection of the next
node to process when
backtracking

384 s (9%)

3. MIP limits aggforcut Limits the number of constraints
that can be aggregated for
generating flow cover and mixed
integer rounding (MIR) cuts

293 s (4%)

in the transition seasons is reduced to a few seconds in some cases and remains close to the
time of the default configuration. There is no wall-clock time reduction for partition 8. For
these nine difficult instances, SMAC was not able to find a CPLEX configuration that leads
to a solution within the cutoff-time of 1 800 s in multiple runs and very high configuration
budgets of three days in total on a processor with 1 TB RAM. Eventually, we solved the
sub-problems in partition 8 using the configuration optimized for the similar partition 7 and
obtained an improvement in this way (see Fig. 5b). Table 1 lists the three parameters that have
the largest effect on performance on average, a brief description, and their mean wall-clock
time reduction and their total relative wall-clock time reduction over all partitions in the
same order as in Fig. 6. Table 3 in Appendix B presents the corresponding results for all 27
partitions in parentheses.

The RINS heuristic parameter changed from the default of 0 to values around 80 in the
optimized configurations. This means that instead of letting CPLEX automatically decide
when to run the heuristic, setting it to be run at fixed intervals of around 80 nodes of the
MILP problem was better.7 Thus, running the heuristic per se does not result in performance
improvements, but increases the overhead, and that CPLEX was unable to detect this and
adjust the frequency accordingly. SMAC, on the other hand, successfully recognized and
exploited this situation.

In the cases where the “nodeselect” parameter was changed from its default of 1, it was
set to 0 or 2 in the optimized configurations. This means that rather than best-bound search,
either depth-first search (0), or best-estimate search (2) was performed. This may indicate
that the objective values derived from the LP-relaxation of the problem are not informative
for selecting the best next node and that simply choosing the most recently created node
(depth-first search) is more effective. For our particular set of problems, many nodes may
have the same objective values, leading to an essentially random selection that turns out to
be bad in many cases.

The “aggforcut” parameter changed from its default of 3 to larger values (between 7
and 10) in the optimized configurations, indicating that a more aggressive aggregation of
constraints is beneficial.

7 Note that the nodes of the MILP problem are different from the computing nodes of the HPC cluster.
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5.3 Advantages of the appliedmethodology

The user cares most about the performance improvement achieved for the overall wall-clock
time as a function of the number of CPU cores utilized. We kept track of the computing time
required for each step of our approach, including solving all MILP sub-problems. Based on
these times, we determined overall wall-clock time. The computing cost is based on Amazon
EC2 (https://aws.amazon.com/ec2/pricing): US-$ 0.239 per full hour and nodewith twoCPU
cores and 16 GB RAM that is required for the CPLEX optimization of the sub-problems.
Figure 7 compares the default and SMAC-optimized configurations with respect to the total
wall-clock time and cost as a function of the number of CPU cores. In addition, the SMAC
configuration effort is illustrated. Note that the overhead of finding the optimized config-
uration is only incurred once, but the optimized configuration can be used to solve MILP
instances from different scenarios more efficiently. In the case of parameter changes and fur-
ther analyses, the deployed optimized configurationwould quickly amortize the configuration
cost and achieve increasingly larger relative improvements over time.

For one CPU core, the total wall-clock time is reduced from 592 days (51,149,983 s)
for the default configuration to 308 days (26,629,672 s) for the optimized configuration. As
a result, the total reduction of the computing cost is about 50% of the initial optimization
with the default configuration (about 30% when the overhead of running SMAC to find
optimized configurations is taken into account). Up to about 100 CPU cores, this ratio of
wall-clock time to computing cost can be maintained, because there is a sufficient number
of sub-problems that can be solved simultaneously at any given time. Beyond 100 CPU
cores, the cost increases, because some CPU cores are idle while other CPU cores are still
computing difficult sub-problems that are required for the DFO approach to process. At
about 6000 CPU cores, this effect negates the individual wall-clock time reduction of the
sub-problems achieved by the optimized CPLEX configurations. Consequently, there is no
further time and cost reduction in this case.
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Fig. 7 Total wall-clock time (solid lines, left log-scaled vertical axis) and total computation cost (dotted lines,
right vertical axis) versus utilized CPU cores (log-scaled horizontal axis) using the default CPLEX configura-
tion (black) and the optimized CPLEX configuration obtained from SMAC plus the configuration effort (red).
(We employed SMAC on up to 27 CPU cores and assume the same scaling effect on total wall-clock time and
cost, when SMAC is employed in parallel mode on more CPU cores.)
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For this paper, we used up to 512 CPU cores of one HPC cluster. This corresponds to
a wall-clock time of about 28 h and computing cost of US-$ 3716, which are reduced by
approximately 45% with the optimized configurations.8 Even when the SMAC run time is
taken into account, about 30% of the time and cost are saved.

6 Discussion

The results presented in Sect. 5 demonstrate that careful partitioning and selection of prob-
lem instances is crucial to achieving good results with automated algorithm configuration
methods for a real-world problem of the magnitude considered here. The fewer partitions
are used, the smaller the potential performance improvement becomes. Too few instances
can lead to configurations that are too specific and do not perform well on other instances
of the partition. On the other hand, too many partitions and instances increase the cost of
running the automated configuration method and thus diminish the subsequent performance
improvements relative to the overall cost. Partitioning based on winter, summer, and transi-
tion seasons enabled an overall performance improvement of about 33%. A finer partitioning
into 27 partitions based on 2-week intervals achieved a performance improvement of 50%,
while maintaining acceptable resource requirements for the configuration procedure.

CPLEX comes with an internal tuning tool. It tries up to 30 different pre-determined con-
figurations and chooses the best of these.While this process takesmuch less time, the achieved
performance improvements are much smaller. For example, a randomly chosen instance that
is not solved within 1 800 s by the default configuration could be solved within 420 s with the
best configuration found by the CPLEX tuning tool, but the same instance is solved four times
faster with the best configuration found by SMAC. This is consistent with results indicating
that state-of-the-art automatic algorithm configuration achieves substantially better results
than the CPLEX tuning tool (Hutter et al. 2010).

Our ablation analysis shows that only a fewparameter adjustments are necessary to achieve
major improvements: changing just three parameters (MIP strategy rinsheur, MIP strategy
nodeselect, and MIP limits aggforcut) already achieves 40% of the total improvement on
average.While these findings, as well as the actual configurations we determined, are specific
to our case study, our overall methodology is applicable more broadly, and we expect that
similar performance improvements and ablation results can be obtained on challenging, large-
scale problems similar to the one considered here. In particular, SMAC can be applied to any
similar problem.

Further performance improvements can be achieved by changing the MILP gap. In this
specific optimization problem, the outer hill-climbing DFO requires a MILP gap of about
0.6% for the sub-problems to work efficiently, but only when the outer DFO is close to the
optimum. One approach to reducing the computational requirements would be to start with
a wider gap and reduce it dynamically as the outer DFO converges on optimal values. A
similar approach could be used for the cutoff-time.

A different way to reduce the required computational resources would be to optimize
the amount of memory required as well as the running time. Some sub-problems require
up to 16 GB RAM with the current best configuration we have found. A reduced memory
requirement would allow more runs on a single node, or the use of cheaper computing nodes
with less RAM.

8 In practice, due to time restrictions per job of the HPC queuing system, the computation takes about a week
using CPLEX in its default configuration, and less than half a week when using the optimized configurations.
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7 Conclusions and future work

Our energy system structure is changing from centralized to decentralized energy systems,
which are subject to manifold sources of uncertainty such as the electrical and thermal
demand and the energy supply. Stochastic Programming helps to avoid insufficient investment
decisions but typically results in extremely large-scale optimization problems. Here, we
have modeled a real-world residential quarter as a two-stage stochastic mixed-integer linear
program, which was subsequently solved on a high-performance computing (HPC) system.
With the default configuration of CPLEX, the problem requires about 28 h of computation
time on 512 CPU cores to be solved. By applying the automatic algorithm configuration
tool SMAC, we were able to determine a set of performance-optimized configurations and
achieve performance improvements of up to 50% overall, and up to 30% when taking into
account the effort of finding the optimized configurations. This enables not only a faster
solution of the given problem, but also facilitates additional analyses, and ultimately makes
it possible to tackle more complex energy systems.

Further computing time and cost reductions could be achieved by adapting the MILP gap
and/or cutoff-time parameters.Moreover, the exact CPLEXoptimization could be substituted
by a heuristic method (e.g., using machine learning for quick approximation of solutions to
sub-problems) subject to the condition of a sufficient solution quality for the outer DFO
approach. Another promising direction would be to adapt the DFO method to be more effi-
cient.

It might seem tempting to apply algorithm configuration to the full problem, without
decomposition. Tackling this challenge would require substantially more powerful MILP
solvers than are currently available. Therefore, using a combination of state-of-the-art algo-
rithm configurators, MILP solvers and decomposition techniques will likely remain for some
time as the best approach to solving complex energy system optimization problems, such as
the one considered here.
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Appendix A

The entire two-stage stochastic MILP of the residential quarter is shown in the following
(nomenclature is listed in Table 2):Objective function:

costs � min
cg,i ,e

grid
ω,t ,e f i

ω,t

AN F ·
4∑

g�1

k1∑

i�1

costi · cg,i

+1

N
·

N∑

ω�1

T∑

t�1

(
pgrid · egrid

ω,t − p f i · e f i
ω,t

)
, (A.1)

• the installed PV capacity of the quarter:
4∑

g�1
cg,i�PV � 240,
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Table 2 Nomenclature of the residential quarter modeled as a two-stage stochastic program

Parameters

AN F Annuity factor

costi Variable capacity costs of component i plus a fixed amount

C O Pω,u,t COP of the heat pump in scenario ω of building group g for
use u at time t

dhp,max
ω,t Maximal heating power of the heat pump at time t

dhe,max Maximal heating power of the heating element

dee
ω,t Electricity demand for electrical usage in scenario ω of

building group g at time t

dω,g,u,t Thermal demand in scenario ω of building group g for use u
at time t

e pv,kwp
ω,t Supplied electrical energy per kilowatt-peak of the PV

system in scenario ω at time t

e pv
ω,t Supplied electrical energy from the PV system in scenario

ω at time t

f Compensation factor for not-covered heat demand

lu Loss factor of heat storage for use u

m Possible power modes of the heat pump

ru Ramp-up loss factor of heat pump for use u

pgrid Price of electricity from grid

p f i Price of feed-in compensation

η Efficiency of the heating element

Variables

cg,i Capacity of building group g of component i

cg,i � PV Installed PV capacity of building group g

cg,i � HPSH Number of heat pumps of building group g for SH

cg,i � HPDHW Number of heat pumps of building group g for DHW

cg,i � HESH Number of heating elements of building group g for SH
storage

cg,i � HEDHW Number of heating elements of building group g for DHW
storage

cg,i � SSH Maximal capacity of heat storage of building group g for SH

cg,i � SDHW Maximal capacity of heat storage of building group g for
DHW

dhpω,g,u,t Used electricity of heat pump in scenario ω of building
group g for use u at time t

dheω,g,u,t Used electricity of heating element in scenario ω of
building group g for use u at time t

egr i dω,t Used electricity from the grid in scenario ω at time t

e f iω,t Fed-in energy of the PV system in scenario ω at time t
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Table 2 continued

posω,g,u,t Pos. variable for positive shift of heat pump in scenario ω of
building group g for use u at time t

negω,g,u,t Pos. variable for negative shift of heat pump in scenario ω

of building group g for use u at time t

qω,g,u,t Not covered heat demand in scenario ω of building group g
for use u at time t

sω,g,u,t Stored heat in scenario ω of building group g for use u at
time t

smin
g,u Minimal heat storage level of building group g for use u

zω,g,u,t Integer/continuous heating power level in scenario ω of
building group g for use u at time t

Indices

g Building group 1, . . . G of the quarter with G � 4

i Component i ∈
{PV , H PSH , H PDH W , H ESH , H EDH W , SSH , SDH W }
of the energy system with |i | � k1 � 7

u Use u ∈ {SH , DH W } for space heating or domestic hot
water with |u| � 2

t Time index 1, . . . , T indicating the time step of the year

ω Scenario index 1, . . . , N

• the number of heat pumps for SH within a building group: cg,i�H PSH � 1,
• the number of heat pumps for DHW within a building group: cg,i�H PDH W � 1,
• the number of heating elements for the SH storage: cg,i�H ESH � 4,
• the number of heating elements for the DHW storage: cg,i�H EDH W � 4.

Additionally, electrical supply and demand have to be balanced:

epv
ω,t + egrid

ω,t � dee
ω,t +

4∑

g�1

2∑

u�1

(
dhp
ω,g,u,t + dhe

ω,g,u,t

)
+ e f i

ω,t ∀ω∀t, (A.2)

with supplied PV energy epv
ω,t �

4∑
g�1

epv,kwp
ω,t · cg,i�PV and balanced thermal supply and

demand:

C O Pω,u,t · dhp
ω,g,u,t + η · dhe

ω,g,u,t + (1 − lu) · sω,g,u,t + qω,g,u,t

� dth
ω,g,u,t + Lω,g,u,t + sω,g,u,t+1 + posω,g,u,t · ru ∀ω,∀g,∀u,∀t, (A.3)

with the storage heat losses lu�SH � 0.003 and lu�DH W � 0.006 and ramp-up losses
ru � 0.05.

The storage possibility is restricted by:

smin
g,u ≤ sω,g,u,t ≤ cg,i�Su ∀ω,∀g,∀u,∀t, (A.4)
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where smin
g,u � 0. Load changes are taken into account by:

zω,g,u,t+1 − zω,g,u,t � posω,g,u,t − negω,g,u,t ∀ω,∀g,∀u,∀t . (A.5)

The heating element supply for each building group is given by:

η · dhe
ω,g,u,t ≤ cg,i�H Eu · dhe,max ∀ω,∀g,∀u,∀t, (A.6)

and the heat pump supply by:

C O Pω,u,t · dhp
ω,g,u,t � 1

m
· dhp,max

ω,t · zω,g,u,t ∀ω,∀g,∀u,∀t, (A.7)

zω,g,u�DH W ,t ≤ m · cg,i�H PDH W ∀ω∀g∀t, (A.8)

2∑

u�1

zω,g,u,t ≤ m ·
2∑

u�1

cg,i�H Pu ∀ω,∀g,∀t . (A.9)

If heat pumps run only at idle, half or full load, then m � 2 with zω,g,u�SH ,t ∈
{0, 1, 2, 3, 4} and zω,g,u�DH W ,t ∈ {0, 1, 2}, otherwise zω,g,u�SH ,t , zω,g,u�DH W ,t ∈ R+.
The following constraints equal the element of the first and last time step t :

sω,g,u,t�T � sω,g,u,t�1 ∀ ω,∀g,∀u, (A.10)

zω,g,u,t�T � zω,g,u,t�1 ∀ ω,∀g,∀u. (A.11)

All presented variables need to be positive:

cg,i , egrid
ω,t , e f i

ω,t , qω,g,u,t , dhp
ω,g,u,t , dhe

ω,g,u,t , sω,g,u,t , Lω,g,u,t , posω,g,u,t ,¬ω,g,u,t , zω,g,u,t

≥ 0 ∀ω,∀g,∀i,∀u,∀t . (A.12)

Appendix B

Table 3 lists the three parameters that have the largest effect on performance and their mean
wall-clock time reduction, itemized in detail for all 27 partitions.
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