
Utilizing Software Features for Algorithm Selection

Damir Pulatov, Lars Kotthoff

Department of Computer Science, University of Wyoming
dpulatov@uwyo.edu,larsko@uwyo.edu

Utilizing Software Features for Algorithm Selection

Damir Pulatov, Lars Kotthoff

Department of Computer Science, University of Wyoming
dpulatov@uwyo.edu,larsko@uwyo.edu

Motivation

• Goal – investigate whether algorithm selection can be improved if we utilize
algorithm features along with instance features

• This iteration of the project uses static algorithm (software) features collected
automatically

• Advantage – the number of performance models is constant no matter how many
algorithms are used in scenario

Setup

Source CodeRun Experiments
Feature Col-
lection Tool

Performance
Measure

Algorithm
Properties

Train Model

Algorithm Selection

• Performed experiments on seven ASlib scenarios (SAT11-INDU, OPENML-

WEKA-2017, etc)̇ as well as scenarios not currently in ASlib (SAT-2018)

• Created SAT18-EXP scenario using main track results with 400 benchmark in-
stances from SAT 2018 competition. Converted data into ASlib format using
scripts from COSEAL’s aslib-spec repository

• SAT18-EXP has all solvers that participated in the competition, except for varisat
since it was written in Rust (software metrics tool does not work)

• Obtained SAT18-EXP’s instance features with SATzilla’s feature collection tool1

• Modified scenarios due to lack of source code, ambiguity in solvers, lack of ability
to take into the account parameter settings, and repeated runs

• Automatically collected algorithmic features for solvers written in C++ and Java
such as cyclomatic complexity (average and total), maxindent complexity (aver-
age and total), lines of code (average and total), size in bytes (average and total),
and number of files2

• Collected algorithmic features by selecting more relevant pieces of code (e.g.,
ignored code responsible for parallelism and certificate generation whenever pos-
sible)

Setup (cont.)

• Trained all models on Teton High-Performance Computing cluster3

• Combined software and instance features by constructing n × m dataframe, where n is the
number of instances times number of solvers, and m is the number of instance and software
features

• Utilized server scripts from aslib-r4 for tuning hyperparameters for individual models. Tuning
for combined models was done similarly (e.g., nested cross-validation and so on).

Results

• Combined model is a Random Forest regression model that utilizes both instance and software
features

• Individual model is the standard model that uses instance features only

• Models with pair regression method available in LLAMA5 were also used to see if combined
regression model performs better than a slightly modified individual model

• mcp and par10 gaps show the normalized fraction of the gap closed by different methods

• A value of 0 corresponds to the single best solver and a value of 1 to the virtual best. Negative
values indicate performance worse than the single best solver

• OPENML was grayed out for par10 table since this metric does not make sense for the scenario

0.45

−0.42

0.46

0.58

0.41

0.88

0.59

0

0.62

0.22

0.5

0.67

0.39

0.92

0.6

−0.17

0.56

−0.51

0.44

0.64

0.31

0.91

0.61

−0.11

GRAPHS−2015

OPENML−WEKA−2017

SAT03−16_INDU

SAT11−HAND

SAT11−INDU

SAT11−RAND

SAT18−EXP

TSP−LION2015

co
m

bin
ed

 re
gr

es
sio

n

ind
ivi

du
al 

pa
ir 

re
gr

es
sio

n

ind
ivi

du
al 

re
gr

es
sio

n

−1.0 −0.5 0.0 0.5 1.0

mcp gap

0.12

0.13

0.24

0.13

0.46

0.29

0

0.19

0.13

0.28

0.12

0.49

0.29

−0.42

0.15

0.12

0.28

0.05

0.48

0.32

−0.22

GRAPHS−2015

OPENML−WEKA−2017

SAT03−16_INDU

SAT11−HAND

SAT11−INDU

SAT11−RAND

SAT18−EXP

TSP−LION2015

co
m

bin
ed

 re
gr

es
sio

n

ind
ivi

du
al 

pa
ir 

re
gr

es
sio

n

ind
ivi

du
al 

re
gr

es
sio

n

−1.0 −0.5 0.0 0.5 1.0

par10 gap

Summary

• Building algorithm selection models with current static features produces
mixed and inconsistent results

• Some scenarios (OPENML) are improved, some stay about same (SAT01-
16 INDU), and others worsen (SAT11-RAND)

• Performing pair regression with instance features gives a much larger im-
provement on some scenarios compared to combined regression model

Future Work

• Build pair regression models that use both software and instance features to
see if they perform any better (currently running experiments)

• Perform feature selection (forward and backward) to find out which software
features will be filtered out

• Investigate better static algorithmic features (a lot of minisat hacked solvers
have very similar values).

• Take into the account data structures and Object-Oriented properties

• Collect dynamic algorithmic features that characterize only the parts of soft-
ware that were executed during runtime (stack trace)

• Find a way to automatically analyze more relevant pieces of source code
related to computation (e.g., ignore code used for GUIs and so on)

• Add feature costs for algorithm properties

References

[1] L Xu et al. “SATzilla2012: Improved algorithm selection based on cost-sensitive classification
models”. In: Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions (Jan.
2012), pp. 55–58.

[2] Metrix++ is a tool to collect and analyse code metrics. url: https : / /

metrixplusplus.github.io/home.html.

[3] Advanced Research Computing Center (2018) Teton Computing Environment, Intel
x86 64 cluster. University of Wyoming, Laramie, WY. url: https://doi.org/10.
15786/M2FY47.

[4] Bernd Bischl et al. “ASlib: A benchmark library for algorithm selection”. In: Artif. Intell.
237 (2016), pp. 41–58. doi: 10.1016/j.artint.2016.04.003. url: https://doi.org/
10.1016/j.artint.2016.04.003.

[5] Lars Kotthoff. LLAMA: Leveraging Learning to Automatically Manage Algorithms. Tech.
rep. arXiv:1306.1031. arXiv, June 2013. url: http://arxiv.org/abs/1306.1031.


