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Motivation

• Goal – investigate whether algorithm selection can be improved if we utilize
algorithm features along with instance features

• This iteration of the project uses static algorithm (software) features collected
automatically

• Advantage – the number of performance models is constant no matter how many
algorithms are used in scenario
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• Performed experiments on seven ASlib scenarios (SAT11-INDU, OPENML-

WEKA-2017, etc)̇ as well as scenarios not currently in ASlib (SAT-2018)

• Created SAT18-EXP scenario using main track results with 400 benchmark in-
stances from SAT 2018 competition. Converted data into ASlib format using
scripts from COSEAL’s aslib-spec repository

• SAT18-EXP has all solvers that participated in the competition, except for varisat
since it was written in Rust (software metrics tool does not work)

• Obtained SAT18-EXP’s instance features with SATzilla’s feature collection tool1

• Modified scenarios due to lack of source code, ambiguity in solvers, lack of ability
to take into the account parameter settings, and repeated runs

• Automatically collected algorithmic features for solvers written in C++ and Java
such as cyclomatic complexity (average and total), maxindent complexity (aver-
age and total), lines of code (average and total), size in bytes (average and total),
and number of files2

• Collected algorithmic features by selecting more relevant pieces of code (e.g.,
ignored code responsible for parallelism and certificate generation whenever pos-
sible)

Setup (cont.)

• Trained all models on Teton High-Performance Computing cluster3

• Combined software and instance features by constructing n × m dataframe, where n is the
number of instances times number of solvers, and m is the number of instance and software
features

• Utilized server scripts from aslib-r4 for tuning hyperparameters for individual models. Tuning
for combined models was done similarly (e.g., nested cross-validation and so on).

Results

• Combined model is a Random Forest regression model that utilizes both instance and software
features

• Individual model is the standard model that uses instance features only

• Models with pair regression method available in LLAMA5 were also used to see if combined
regression model performs better than a slightly modified individual model

• mcp and par10 gaps show the normalized fraction of the gap closed by different methods

• A value of 0 corresponds to the single best solver and a value of 1 to the virtual best. Negative
values indicate performance worse than the single best solver

• OPENML was grayed out for par10 table since this metric does not make sense for the scenario
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Summary

• Building algorithm selection models with current static features produces
mixed and inconsistent results

• Some scenarios (OPENML) are improved, some stay about same (SAT01-
16 INDU), and others worsen (SAT11-RAND)

• Performing pair regression with instance features gives a much larger im-
provement on some scenarios compared to combined regression model

Future Work

• Build pair regression models that use both software and instance features to
see if they perform any better (currently running experiments)

• Perform feature selection (forward and backward) to find out which software
features will be filtered out

• Investigate better static algorithmic features (a lot of minisat hacked solvers
have very similar values).

• Take into the account data structures and Object-Oriented properties

• Collect dynamic algorithmic features that characterize only the parts of soft-
ware that were executed during runtime (stack trace)

• Find a way to automatically analyze more relevant pieces of source code
related to computation (e.g., ignore code used for GUIs and so on)

• Add feature costs for algorithm properties
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