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Automated Parameter Tuning

D> treat tunable process as black box — no knowledge of inner
workings required

D> intelligently and iteratively select parameter settings likely to
improve performance

D> mature techniques used in many areas of Al



Optimizing Graphene Oxide Reduction

> reduce graphene oxide to graphene through laser irradiation

> allows to create electrically conductive lines in insulating
material

D> laser parameters need to be tuned carefully to achieve good
results




From Graphite/Coal to Carbon Electronics
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Experimental Setup
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Evaluation of Irradiated Material
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Morphology of Irradiated Material
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Tuned Parameters
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> improvement of factor of two over best result in literature

> good results even with small amount of initial data (19
evaluations)

B> code can be used by domain experts with no background in
machine learning



Explored Parameter Space
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Outlook

D> application to other materials

> more in-depth investigation of Bayesian Optimization
performance

> inform understanding of process by what surrogate model has
learned
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Summary
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