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Automated Parameter Tuning

▷ treat tunable process as black box – no knowledge of inner
workings required

▷ intelligently and iteratively select parameter settings likely to
improve performance

▷ mature techniques used in many areas of AI

3



Optimizing Graphene Oxide Reduction

▷ reduce graphene oxide to graphene through laser irradiation
▷ allows to create electrically conductive lines in insulating

material
▷ laser parameters need to be tuned carefully to achieve good

results
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From Graphite/Coal to Carbon Electronics

Overview of the Process
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Experimental Setup
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Evaluation of Irradiated Material
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Morphology of Irradiated Material
Morphology of Irradiated Films
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Bayesian Optimization with Surrogate Models

▷ evaluate small number of initial (random) configurations
▷ build surrogate model of parameter-performance surface based

on this
▷ use model to predict where to evaluate next
▷ repeat
▷ allows targeted exploration of new configurations

9



Bayesian Optimization with Surrogate Models
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Bayesian Optimization with Surrogate Models
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https://www.automl.org/book/
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Tuned Parameters

▷ laser power (1 mW to 4400 mW), duration for irradiating spot
(710 ms to 20 210 ms), pressure in reaction chamber (10 psi to
100 psi)

▷ ≈7.8 billion configurations
▷ individual graphene oxide sample allows for max 361

evaluations, about 2 weeks of human operator time
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Tuned Parameters
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Tuned ParametersSurrogate model results
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• Predictions work even with small training dataset (19 points)
• AI Model achieved IG/ID ratio (>6) after 1st prediction

During Training After 1st prediction

+   Prediction
• Actual

50 um50 um

▷ improvement of factor of two over best result in literature
▷ good results even with small amount of initial data (19

evaluations)
▷ code can be used by domain experts with no background in

machine learning
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Explored Parameter Space
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Tuned Parameters – Kapton

▷ extend parameter space with gas in reaction chamber – air,
argon, nitrogen

▷ extend ranges of other parameters
▷ more and longer experimental campaigns
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Tuned Parameters – Kapton

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

0

1

2

3

4

5

0 10 20 30 40 50
Iteration

R
at

io

22



Explored Parameter Space – Kapton
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Design of New Materials

▷ optimize parameters of pattern generator for energy
absorption of material

▷ six numeric parameters
▷ computational evaluation of candidates
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ML-Optimized Generator Parameters
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ML-Optimized Generator Parameters
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ML-Optimized Generator Parameters
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Outlook

▷ automate experimental setup
▷ application to other materials
▷ more in-depth investigation of Bayesian Optimization

performance (and other approaches)
▷ inform understanding of process by what surrogate model has

learned
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Other Projects

▷ optimization of wear of buttons
▷ density functional theory (DFT) calculations of properties of

graphene
▷ optimization of DFT calculations
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Challenges and Opportunities

▷ sparsity of data
▷ multi-scale measurements
▷ combination of optimization with experiments and simulations

30



Do Try This at Home

Tutorial on AI for Materials Science @ IJCAI 2019
https://www.cs.uwyo.edu/~larsko/aimat-tut/
Simulator optimizers available
▷ build surrogate model based on (relatively) large amount of

data
▷ Bayesian Optimization based on this surrogate model
▷ playground to try your own approaches
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Summary
Surrogate model results
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AIM

Artificially Intelligent Manufacturing Center @ University of
Wyoming

www.uwyo.edu/aim

33

www.uwyo.edu/aim

