
AI-Augmented Algorithms
How I Learned to Stop Worrying and Love Choice

Lars Kotthoff
University of Wyoming

larsko@uwyo.edu

Boulder, 16 January 2019

larsko@uwyo.edu

Outline

▷ Big Picture
▷ Motivation
▷ Choosing Algorithms
▷ Tuning Algorithms
▷ (NCAR-relevant) Applications
▷ Outlook and Resources

2

Big Picture
▷ advance the state of the art through meta-algorithmic

techniques
▷ rather than inventing new things, use existing things more

intelligently – automatically
▷ invent new things through combinations of existing things

https://xkcd.com/720/

3

Big Picture
▷ advance the state of the art through meta-algorithmic

techniques
▷ rather than inventing new things, use existing things more

intelligently – automatically
▷ invent new things through combinations of existing things

https://xkcd.com/720/ 3

Motivation – What Difference
Does It Make?

4

Prominent Application

Fréchette, Alexandre, Neil Newman, Kevin Leyton-Brown. “Solving the
Station Packing Problem.” In Association for the Advancement of Artificial
Intelligence (AAAI), 2016.

5

Performance Differences

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

V
irt

ua
l B

es
t S

A
T

Virtual Best CSP

Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan. “Proteus:
A Hierarchical Portfolio of Solvers and Transformations.” In CPAIOR, 2014.

6

Leveraging the Differences

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla: Portfolio-Based Algorithm Selection for SAT.” J. Artif. Intell. Res.
(JAIR) 32 (2008): 565–606.

7

Performance Improvements

Configuration of a SAT Solver for Verification [Hutter et al, 2007]

Ran FocusedILS, 2 days × 10 machines

– On a training set from each benchmark

Compared to manually-engineered default

– 1 week of performance tuning

– Competitive with the state of the art

– Comparison on unseen test instances

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
,
o
p
ti
m

iz
e
d
 f
o
r

IB
M

−
B

M
C

 (
s
)

4.5-fold speedup

on hardware verification

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

SPEAR, original default (s)

S
P

E
A

R
,
o
p
ti
m

iz
e
d
 f
o
r

S
W

V
 (

s
)

500-fold speedup won category

QF BV in 2007 SMT competition
Hutter & Lindauer AC-Tutorial AAAI 2016, Phoenix, USA 17

Hutter, Frank, Domagoj Babic, Holger H. Hoos, and Alan J. Hu.
“Boosting Verification by Automatic Tuning of Decision Procedures.” In
FMCAD ’07: Proceedings of the Formal Methods in Computer Aided Design,
27–34. Washington, DC, USA: IEEE Computer Society, 2007. 8

Common Theme

Performance models of black-box processes
▷ also called surrogate models
▷ substitute expensive underlying process with cheap

approximate model
▷ build approximate model using machine learning techniques

based on results of evaluations of the underlying process
▷ no knowledge of what the underlying process is required (but

can be helpful)
▷ may facilitate better understanding of the underlying process

through interrogation of the model

9

Choosing Algorithms

10

Algorithm Selection

Given a problem, choose the best algorithm to solve it.

Rice, John R. “The Algorithm Selection Problem.” Advances in Computers
15 (1976): 65–118.

11

Algorithm Selection

Portfolio

Algorithm 2Algorithm 1 Algorithm 3

Training Instances

Instance 2Instance 1 Instance 3

Algorithm Selection

Performance Model

Instance 4
Instance 5
Instance 6

...

Instance 4: Algorithm 2
Instance 5: Algorithm 3
Instance 6: Algorithm 3

...

Feature Extraction

Feature
Extraction

12

Algorithm Portfolios

▷ instead of a single algorithm, use several complementary
algorithms

▷ idea from Economics – minimise risk by spreading it out
across several securities

▷ same for computational problems – minimise risk of algorithm
performing poorly

▷ in practice often constructed from competition winners or
other algorithms known to have good performance

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. “An Economics
Approach to Hard Computational Problems.” Science 275, no. 5296 (1997):
51–54. doi:10.1126/science.275.5296.51.

13

Algorithms

“algorithm” used in a very loose sense
▷ algorithms
▷ heuristics
▷ machine learning models
▷ software systems
▷ machines
▷ …

14

Parallel Portfolios

Why not simply run all algorithms in parallel?
▷ not enough resources may be available/waste of resources
▷ algorithms may be parallelized themselves
▷ memory/cache contention

15

Building an Algorithm Selection System

▷ requires algorithms with complementary performance
▷ most approaches rely on machine learning
▷ train with representative data, i.e. performance of all

algorithms in portfolio on a number of instances
▷ evaluate performance on separate set of instances
▷ potentially large amount of prep work

16

Key Components of an Algorithm Selection System

▷ feature extraction
▷ performance model
▷ prediction-based selector/scheduler

optional:
▷ presolver
▷ secondary/hierarchical models and predictors (e.g. for feature

extraction time)

17

Types of Performance Models

Regression Models

A1

A2
A3

A1: 1.2
A2: 4.5
A3: 3.9

Classification Model

A1
A3 A1

A2 A1

Pairwise Classification Models

A1 vs. A2

A1
A2 A1

A1

A1 vs. A3

A1
A1 A3

A3 …
A1: 1 vote
A2: 0 votes
A3: 2 votes

Pairwise Regression Models

A1 - A2

0

A1 - A3

0
…

A1: -1.3
A2: 0.4
A3: 1.7

Instance 1
Instance 2
Instance 3

...

Instance 1: Algorithm 2
Instance 2: Algorithm 1
Instance 3: Algorithm 3

...

18

Tuning Algorithms

19

Algorithm Configuration

Given a (set of) problem(s), find the best parameter configuration.

20

Parameters?

▷ anything you can change that makes sense to change
▷ e.g. search heuristic, optimization level, computational

resolution
▷ not random seed, whether to enable debugging, etc.
▷ some will affect performance, others will have no effect at all

21

Automated Algorithm Configuration

▷ no background knowledge on parameters or algorithm –
black-box process

▷ as little manual intervention as possible
▷ failures are handled appropriately
▷ resources are not wasted
▷ can run unattended on large-scale compute infrastructure

22

Algorithm Configuration

Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on
Tutorial”, AAAI 2016

23

General Approach

▷ evaluate algorithm as black-box function
▷ observe effect of parameters without knowing the inner

workings, build surrogate model based on this data
▷ decide where to evaluate next, based on surrogate model
▷ repeat

24

When are we done?

▷ most approaches incomplete, i.e. do not exhaustively explore
parameter space

▷ cannot prove optimality, not guaranteed to find optimal
solution (with finite time)

▷ performance highly dependent on configuration space_ How do we know when to stop?

25

Time Budget

How much time/how many function evaluations?
▷ too much _ wasted resources
▷ too little _ suboptimal result
▷ use statistical tests
▷ evaluate on parts of the instance set
▷ for runtime: adaptive capping
▷ in general: whatever resources you can reasonably invest

26

Grid and Random Search
▷ evaluate certain points in parameter space

Bergstra, James, and Yoshua Bengio. “Random Search for
Hyper-Parameter Optimization.” J. Mach. Learn. Res. 13, no. 1 (February
2012): 281–305.

27

Model-Based Search

▷ evaluate small number of configurations
▷ build model of parameter-performance surface based on the

results
▷ use model to predict where to evaluate next
▷ repeat
▷ allows targeted exploration of new configurations
▷ can take instance features into account like algorithm selection

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential
Model-Based Optimization for General Algorithm Configuration.” In LION 5,
507–23, 2011.

28

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.000

0.005

0.010

0.015

0.020

0.025

x

type

● init

prop

type

y

yhat

ei

Iter = 1, Gap = 1.9909e−01

29

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.00

0.01

0.02

0.03

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 2, Gap = 1.9909e−01

30

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.000

0.002

0.004

0.006

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 3, Gap = 1.9909e−01

31

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0e+00

2e−04

4e−04

6e−04

8e−04

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 4, Gap = 1.9992e−01

32

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0e+00

1e−04

2e−04

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 5, Gap = 1.9992e−01

33

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.00000

0.00003

0.00006

0.00009

0.00012

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 6, Gap = 1.9996e−01

34

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 7, Gap = 2.0000e−01

35

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 8, Gap = 2.0000e−01

36

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0.0e+00

2.5e−06

5.0e−06

7.5e−06

1.0e−05

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 9, Gap = 2.0000e−01

37

Model-Based Search Example

●

●

●

●

●

y
ei

−1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

0e+00

1e−07

2e−07

3e−07

4e−07

x

type

● init

prop

seq

type

y

yhat

ei

Iter = 10, Gap = 2.0000e−01

38

Selected Applications

39

Compiler Parameter Tuning
▷ pre-defined optimization levels offer not much flexibility
▷ improvements possible by tuning full compiler parameter space
▷ tuned compute-intensive AI algorithms
▷ up to 40% runtime improvement over gcc -O2/-O3

Pérez Cáceres, Leslie, Federico Pagnozzi, Alberto Franzin, and Thomas
Stützle. “Automatic Configuration of GCC Using Irace.” In Artificial Evolution,
edited by Evelyne Lutton, Pierrick Legrand, Pierre Parrend, Nicolas
Monmarché, and Marc Schoenauer, 202–16. Cham: Springer International
Publishing, 2018.

40

Compiler Parameter Tuning
▷ not only for C/C++
▷ JavaScript (JavaScriptCode, V8) optimized for standard

benchmarks
▷ up to 35% runtime improvement

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Default configuration PAR10 (CPU s) (log scale)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

T
u
n
e
d
 c

o
n
fi
g
u
ra

ti
o
n
 P

A
R

1
0
 (

C
P
U

 s
)

(l
o
g
 s

ca
le

)

Fawcett, Chris, Lars Kotthoff, and Holger H. Hoos. “Hot-Rodding the
Browser Engine: Automatic Configuration of JavaScript Compilers.” CoRR
abs/1707.04245 (2017). http://arxiv.org/abs/1707.04245. 41

“Deep” Parameter Tuning
▷ automatically identify non-exposed parameters and allow them

to be tuned (e.g. magic constants)
▷ tuned dlmalloc library, specialized for e.g. awk, flex, sed
▷ runtime improvements of up to 12%, decrease in memory

consumption of up to 21%

Wu, Fan, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke.
“Deep Parameter Optimisation.” In Conference on Genetic and Evolutionary
Computation, 1375–82. GECCO ’15. New York, NY, USA: ACM, 2015.
https://doi.org/10.1145/2739480.2754648. 42

Beyond Software

43

Outlook

44

Quo Vadis, Software Engineering?

Run

Hoos, Holger H. “Programming by Optimization.” Communications of the
Association for Computing Machinery (CACM) 55, no. 2 (February 2012):
70–80. https://doi.org/10.1145/2076450.2076469.

45

Quo Vadis, Software Engineering?

Run

+ AI

Hoos, Holger H. “Programming by Optimization.” Communications of the
Association for Computing Machinery (CACM) 55, no. 2 (February 2012):
70–80. https://doi.org/10.1145/2076450.2076469.

45

(Much) More Information

https://larskotthoff.github.io/assurvey/

Kotthoff, Lars. “Algorithm Selection for Combinatorial Search Problems: A
Survey.” AI Magazine 35, no. 3 (2014): 48–60.

46

https://larskotthoff.github.io/assurvey/

Tools and Resources

LLAMA https://bitbucket.org/lkotthoff/llama
SATzilla http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

iRace http://iridia.ulb.ac.be/irace/
mlrMBO https://github.com/mlr-org/mlrMBO

SMAC http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
Spearmint https://github.com/HIPS/Spearmint

TPE https://jaberg.github.io/hyperopt/

autofolio https://bitbucket.org/mlindauer/autofolio/
Auto-WEKA http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

Auto-sklearn https://github.com/automl/auto-sklearn

47

https://bitbucket.org/lkotthoff/llama
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
http://iridia.ulb.ac.be/irace/
https://github.com/mlr-org/mlrMBO
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
https://github.com/HIPS/Spearmint
https://jaberg.github.io/hyperopt/
https://bitbucket.org/mlindauer/autofolio/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://github.com/automl/auto-sklearn

Summary

Algorithm Selection choose the best algorithm for solving a
problem

Algorithm Configuration choose the best parameter configuration
for solving a problem with an algorithm

▷ mature research areas
▷ can combine configuration and selection
▷ effective tools are available
▷ COnfiguration and SElection of ALgorithms group COSEAL

http://www.coseal.net

Don’t set parameters prematurely, embrace choice!

48

http://www.coseal.net

I’m hiring!

Several funded graduate positions available.

49

