Al-Augmented Algorithms How I Learned to Stop Worrying and Love Choice

Lars Kotthoff

University of Wyoming larsko@uwyo.edu

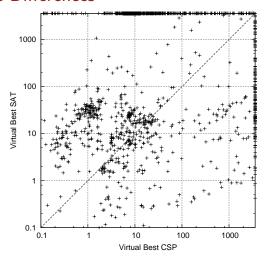
Warsaw, 17 April 2019

Outline

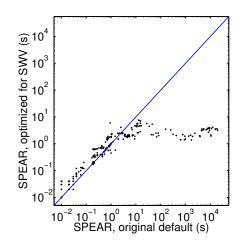
- ▷ Big Picture
- ▶ Motivation
- □ Tuning Algorithms
- ▶ Applications
- Outlook and Resources

Big Picture

- advance the state of the art through meta-algorithmic techniques
- Prather than inventing new things, use existing things more intelligently − automatically
- invent new things through combinations of existing things


Motivation – What Difference Does It Make?

Prominent Application


Fréchette, Alexandre, Neil Newman, Kevin Leyton-Brown. "Solving the Station Packing Problem." In Association for the Advancement of Artificial Intelligence (AAAI), 2016.

Performance Differences

Hurley, Barry, Lars Kotthoff, Yuri Malitsky, and Barry O'Sullivan. "Proteus: A Hierarchical Portfolio of Solvers and Transformations." In CPAIOR, 2014.

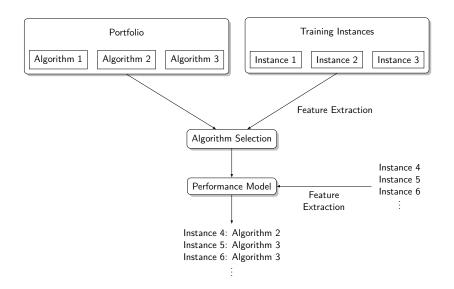
Performance Improvements

Hutter, Frank, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. "Boosting Verification by Automatic Tuning of Decision Procedures." In FMCAD '07: Proceedings of the Formal Methods in Computer Aided Design, 27–34. Washington, DC, USA: IEEE Computer Society, 2007.

Common Theme

Performance models of black-box processes

- ▷ also called surrogate models
- substitute expensive underlying process with cheap approximate model
- build approximate model using machine learning techniques based on results of evaluations of the underlying process
- ▷ no knowledge of what the underlying process is required (but can be helpful)
- may facilitate better understanding of the underlying process through interrogation of the model


Choosing Algorithms

Algorithm Selection

Given a problem, choose the best algorithm to solve it.

Rice, John R. "The Algorithm Selection Problem." Advances in Computers 15 (1976): 65-118.

Algorithm Selection

Algorithm Portfolios

- instead of a single algorithm, use several complementary algorithms
- idea from Economics − minimise risk by spreading it out across several securities
- same for computational problems minimise risk of algorithm performing poorly
- ▷ in practice often constructed from competition winners or other algorithms known to have good performance

Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. "An Economics Approach to Hard Computational Problems." Science 275, no. 5296 (1997): 51–54. doi:10.1126/science.275.5296.51.

Algorithms

"algorithm" used in a very loose sense

- ▷ algorithms
- ▷ heuristics
- ▷ machine learning models
- ▷ software systems
- ▷ machines
- ▷ ..

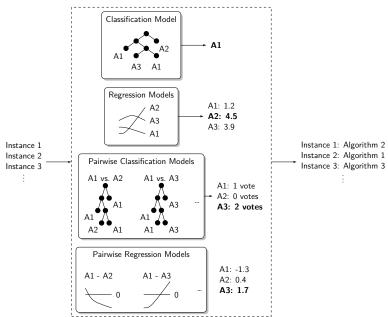
Parallel Portfolios

Why not simply run all algorithms in parallel?

- ▷ not enough resources may be available/waste of resources
- ▷ algorithms may be parallelized themselves
- ightharpoonup memory/cache contention

Building an Algorithm Selection System

- requires algorithms with complementary performance
- most approaches rely on machine learning
- brain with representative data, i.e. performance of all algorithms in portfolio on a number of instances
- evaluate performance on separate set of instances
- ▷ potentially large amount of prep work


Key Components of an Algorithm Selection System

- ▷ performance model
- prediction-based selector/scheduler

optional:

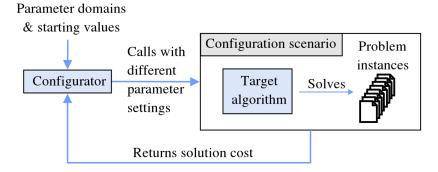
- ▷ presolver
- secondary/hierarchical models and predictors (e.g. for feature extraction time)

Types of Performance Models

Tuning Algorithms

Algorithm Configuration

Given a (set of) problem(s), find the best parameter configuration.


Parameters?

- ▷ anything you can change that makes sense to change
- e.g. search heuristic, optimization level, computational resolution
- ▷ not random seed, whether to enable debugging, etc.

Automated Algorithm Configuration

- no background knowledge on parameters or algorithm black-box process
- > as little manual intervention as possible
 - ▷ failures are handled appropriately
 - resources are not wasted
 - □ can run unattended on large-scale compute infrastructure

Algorithm Configuration

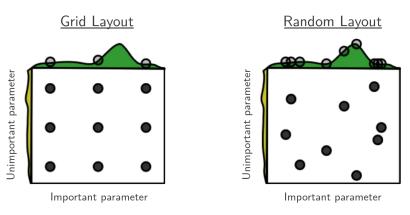
Frank Hutter and Marius Lindauer, "Algorithm Configuration: A Hands on Tutorial", AAAI 2016

General Approach

- observe effect of parameters without knowing the inner workings, build surrogate model based on this data
- ightharpoonup decide where to evaluate next, based on surrogate model
- ▷ repeat

When are we done?

- most approaches incomplete, i.e. do not exhaustively explore parameter space
- cannot prove optimality, not guaranteed to find optimal solution (with finite time)
- performance highly dependent on configuration space
- → How do we know when to stop?

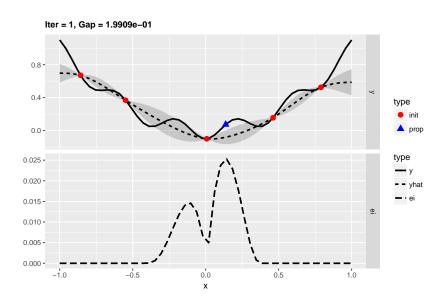

Time Budget

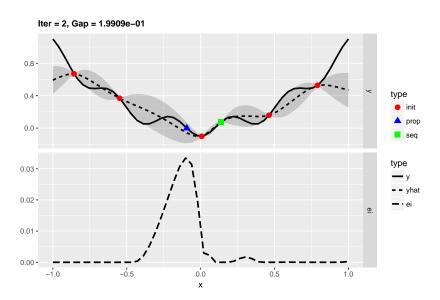
How much time/how many function evaluations?

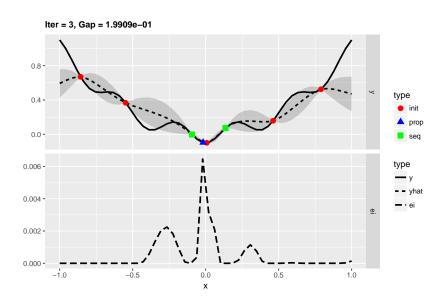
- b too much → wasted resources
- b too little → suboptimal result
- ▷ use statistical tests
- evaluate on parts of the instance set
- for runtime: adaptive capping
- ▷ in general: whatever resources you can reasonably invest

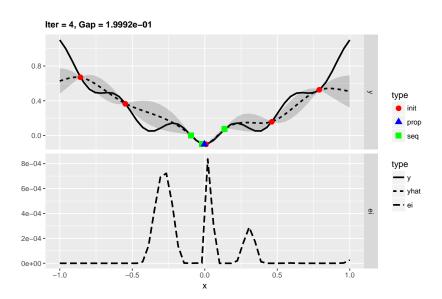
Grid and Random Search

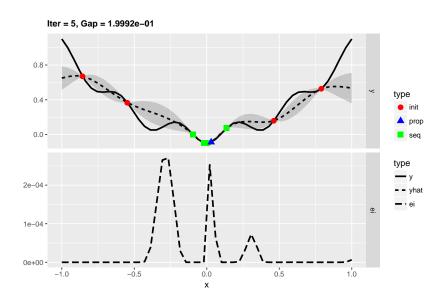
evaluate certain points in parameter space

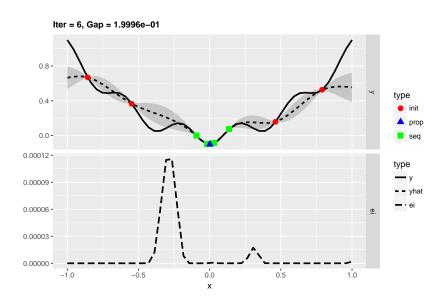


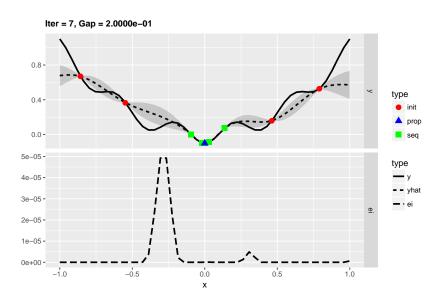

Bergstra, James, and Yoshua Bengio. "Random Search for Hyper-Parameter Optimization." J. Mach. Learn. Res. 13, no. 1 (February 2012): 281–305.

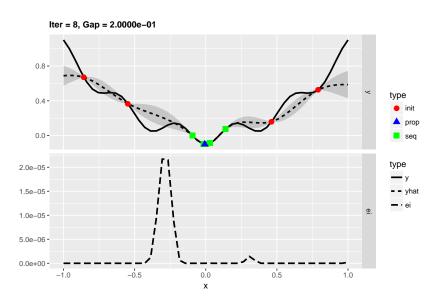

Model-Based Search

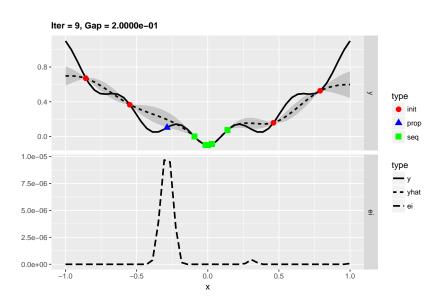

- evaluate small number of configurations
- build model of parameter-performance surface based on the results
- ▷ use model to predict where to evaluate next
- ▷ repeat
- ▷ allows targeted exploration of new configurations
- can take instance features into account like algorithm selection

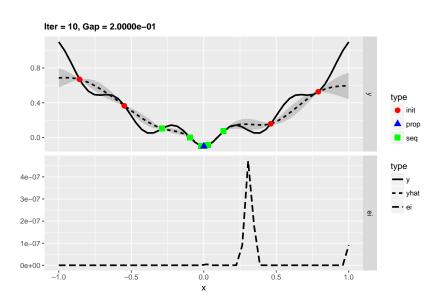

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Sequential Model-Based Optimization for General Algorithm Configuration." In LION 5, 507–23, 2011.

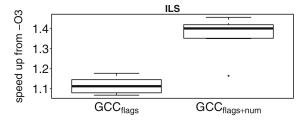






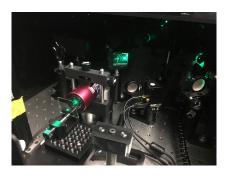


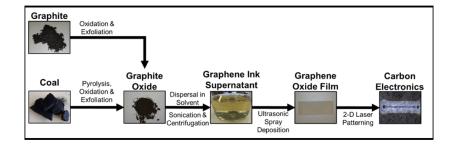



Model-Based Search Example

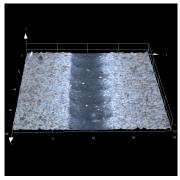
Selected Applications

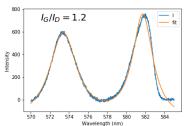
Compiler Parameter Tuning

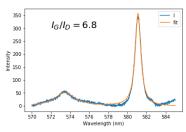

- ▷ pre-defined optimization levels offer not much flexibility
- ▷ improvements possible by tuning full compiler parameter space
- □ tuned compute-intensive Al algorithms
- \triangleright up to 40% runtime improvement over gcc -02/-03

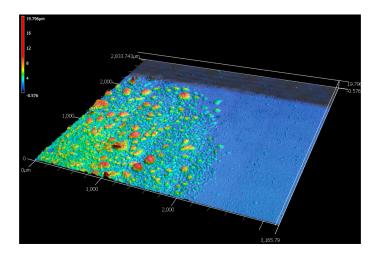

Pérez Cáceres, Leslie, Federico Pagnozzi, Alberto Franzin, and Thomas Stützle. "Automatic Configuration of GCC Using Irace." In Artificial Evolution, edited by Evelyne Lutton, Pierrick Legrand, Pierre Parrend, Nicolas Monmarché, and Marc Schoenauer, 202–16. Cham: Springer International Publishing, 2018.

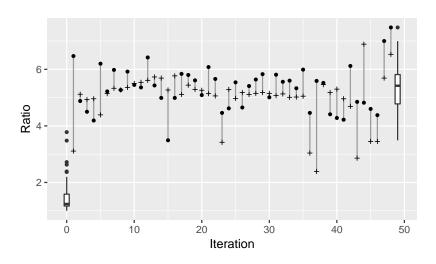
Application – Optimizing Graphene Oxide Reduction

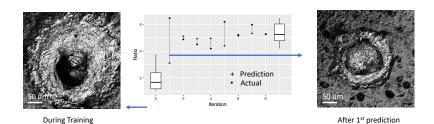

- ▷ reduce graphene oxide to graphene through laser irradiation
- ▷ allows to create electrically conductive lines in insulating material
- ▷ laser parameters need to be tuned carefully to achieve good results



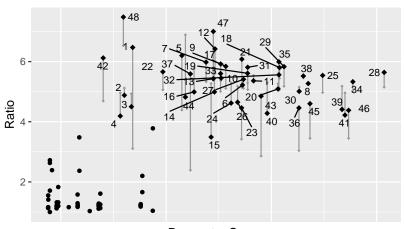

From Graphite/Coal to Carbon Electronics


Evaluation of Irradiated Material




Morphology of Irradiated Material

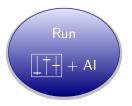
Surrogate-Model-Based Optimization



Surrogate-Model-Based Optimization

Predictions work even with small training dataset (19 points)
 Al Model achieved I_G/I_D ratio (>6) after 1st prediction

Explored Parameter Space


Parameter Space

Outlook

Quo Vadis, Software Engineering?

Quo Vadis, Software Engineering?

Hoos, Holger H. "Programming by Optimization." Communications of the Association for Computing Machinery (CACM) 55, no. 2 (February 2012): 70–80. https://doi.org/10.1145/2076450.2076469.

(Much) More Information

Considers? Algorithm Selection Literature Summary cick heatings to zo dick heatings to zo dick datafors to zo dick datafors to zo zo dick datafors to zo zo dick datafors to zo								ps to sort expand
citation		domain	features	predict what	predict how	predict when	portfolio	year
Langley 1983b, Langley 1983a	6600	rh.	gast performance	alcoritors	hand-grafted and learned rules	offine and online	dynamic	1983
Carbonell et al. 1991	plans		problem domain features, search statistics	control rules	explanation based rule construction	online	dynamic	1991
Gratch and DeJong 1992	plane	ning	problem domain features, search statistics	control rules	probabilistic rule construction	online	dynamic	1992
Smith and Setilf 1992		sare design	features of abstract representation	algorithms and data structures	simulated annealing	offine	statio	1992
Aha 1992		hine learning	instance features	algorithm	learned rules	offine	static	1992
Brodley 1993	macl	hine learning	instance and algorithm features	algorithm	hand-grafted rules	offine	static	1993
Kamel et al. 1993	differ	rential equations	past performance, instance features	algorithm	hand-crafted rules	offine	statio	1993
Minton 1993b, Minton 1993a, Minton 1995	CSP		runtime performance	algorithm	hand-traffed and learned rules	offine	dynamic	1993
Cahil 1994	softv	sare design	Instance features	algorithms and data structures	frame-based knowledge base	offine	static	1994
Teang et al. 1995	CSP		instance features				statio	1995
Brewer 1995	softe	sare design	runtime performance	algorithms, data structures and their parameters	statistical model	offine	statio	1966
Weerswarans et al. 1995, Joshi et al. 1995		rential equations	instance features	runtime performance	Bayesian belief propagation, neural nets	offine	static	1996
Borrett et al. 1996	CSP		search statistics	switch algorithm?	hand-grafted rules	online	statio, statio order	1966
Allen and Minton 1996	SAT	CSP	probing	runtime performance	hand-crafted rules	online	statio	1996
Sakkout et al. 1995	CSP		search statistics	switch algorithm?	hand-crafted rules	online	static	1996
Huberman et al. 1997	grapi	h colouring	past performance	resource allocation	statistical model	offine	static	1997
Gomes and Selman 1997b, Gomes and Selman 11	997a CSP		problem size and past performance	algorithm	statistical model	offine	static	1997
Cook and Varnell 1997	panal	ilel search	probing	set of search strategies	decision trees, Bayesian classifier, nearest neighbour, neural net.	online	static	1997
Fina 1997, Fina 1998	plen	ning	past performance	resource allocation	statistical model, regression	office	statio	1997
Lobiols and Lemaitre 1998	bran	ch and bound	probing	runtime performance	hand-grafted rules	online	atatic	1998
Caseau et al. 1999	vehic	de routing problem	runtime performance	alporities	penetic algorithms	office	static	1999
Howe et al. 1999	plane	nine	instance features	resource allocation	linear regression	office	static	1999
Terashima-Marin et al. 1999	site	duling	instance and search features	algorithm	genetic algorithms	offine	dynamic	1969
Wilson et al. 2000		nare design	instance features	data structures	nearest neighbour	offine	statio	2000
Beck and Fox 2000		hop scheduling	instance feature changes during search	algorithm scheduling policy	hand-crafted rules	online	static	2000
Brazdi and Scares 2000	class	sification	past performance	ranking	distribution model	offine	statio	2000
Lagoudakis and Littman 2000		r selection, sorting	instance features	remaining cost for each sub- problem	MDP	online	statio	2000
Silto 2000	CSP		probing	cost of solving problem	statistical model	offine	static	2000
Pfahringer et al. 2000		sification	instance features, probing	algorithm	9 different classifiers	offine	statio	2000
Fukunaga 2000	TSP		past performance	resource allocation	performance simulation for different allocations	offine	statio	2000
Scares and Brazdii 2000	mad	hine learning	instance features	ranking	nearest neighbour	offine	static	2000
Gomes and Selman 2001		reixed integer namening	past performance	algorithm	statistical model	offine	dynamic	2001
Epstein and Freuder 2001, Epstein et al. 2002, Ep Petrovic 2011	stein et al. 2005, Epstein and CSP		variable characteristics	algorithm	weights, hand-crafted rules	offine and online	dynamic	2001
Lagoudakis and Litman 2001		L branching rules	instance features	remaining cost for each sub- problem	MDP	online	static	2001
Nareyek 2001		nization	search statistics	expected utility of algorithm	reinforcement learning	offine and online	static	2001
Horvitz et al. 2001	CSP		instance and instance generalor	runtime performance, restart	Bayesian model	offine and online	atatic	2001

https://larskotthoff.github.io/assurvey/

Kotthoff, Lars. "Algorithm Selection for Combinatorial Search Problems: A Survey." Al Magazine 35, no. 3 (2014): 48–60.

Tools and Resources

```
LLAMA https://bitbucket.org/lkotthoff/llama
   SATzilla http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
      iRace http://iridia.ulb.ac.be/irace/
   mlrMBO https://github.com/mlr-org/mlrMBO
     SMAC http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
 Spearmint https://github.com/HIPS/Spearmint
      TPE https://jaberg.github.io/hyperopt/
   autofolio https://bitbucket.org/mlindauer/autofolio/
Auto-WEKA http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
Auto-sklearn https://github.com/automl/auto-sklearn
```

Summary

- Algorithm Selection choose the best *algorithm* for solving a problem
- Algorithm Configuration choose the best *parameter configuration* for solving a problem with an algorithm

 - □ can combine configuration and selection
 - ▷ effective tools are available
 - COnfiguration and SElection of ALgorithms group COSEAL http://www.coseal.net

Don't set parameters prematurely, embrace choice!

I'm hiring!

Several funded graduate positions available.

