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work by Jared Davis
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Syntax

to the logics of NQTHM and ACL2. The objects of the logic are the natural
numbers, symbols, and conses (ordered pairs) of other objects; we call these
objects S-expressions. The logic has primitive functions for working with S-
expressions like equality checking, addition, cons, car, cdr, etc., whose behavior
is given with axioms. Starting from these primitives, we can define recursive
functions that look like Lisp programs. An introduction to the logic can be
found in Chapter 2 of Davis [2].

The Milawa logic is considerably weaker than popular higher-order logics.
Thanks to this, its soundness can be established using higher-order logic as the
meta-logic. In this section, we explain how we have used the HOL4 system to
formalize the syntax (Section 4.1), semantics (4.3) and rules of inference (4.4) of
the Milawa logic, and to mechanically prove the soundness of its inference rules
(4.5) and definition principle (4.6). In later sections we connect these soundness
proofs to the theorem prover’s implementation.

4.1 Syntax of terms and formulas

We formalize the syntax of the Milawa logic as the following datatype:

sexp ::= Val num | Sym string | Dot sexp sexp S-expression

prim ::= If | Equal | Not | Symbolp | Symbol less
| Natp | Add | Sub | Less | Consp | Cons
| Car | Cdr | Rank | Ord less | Ordp

func ::= PrimitiveFun prim primitive functions
| Fun string user-defined

term ::= Const sexp constant S-expression
| Var string variable
| App func (term list) function application
| LamApp (string list) term (term list) � formals body actuals

formula ::= ¬formula negation
| formula _ formula disjunction
| term = term term equality

These type definitions are not quite enough to capture correct Milawa syntax.
We write separate well-formedness predicates called term ok and formula ok to
formalize the additional requirements. In particular,

– every function application must have correct arity and refer to a known
function with respect to the context (see below), and

– every lambda application must have the same number of formal and actual
parameters, must have distinct formal parameters, and its body must not
refer to variables other than its formal parameters; these requirements make
substitution straightforward.

4
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from            to
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4.2 Context

The definitions of the syntax, semantics and inference rules all depend on infor-
mation regarding user-defined functions. To keep the formalization simple, we
chose to combine all of this information into a single mapping, which we call
the logical context. We model the logical context as a finite partial map ⇡ from
function names, of type string , to elements of type:

string list⇥ func body ⇥ (sexp list ! sexp)

The first component, string list, names the formal parameters for the function.
The second component, func body , gives the syntactic definition for the function.
This func body is usually either (1) the right-hand side of a definition, for an
ordinary function defined by an equation, or (2) a variable name and property,
for a witness (Skolem) function. For reasons that will be explained in Section 4.6,
we also allow the omission of the function body, i.e., a None alternative.

func body ::= Body term concrete term (e.g. recursive function)
| Witness term string property, element name
| None no function body given

Finally, the sexp list ! sexp component is an interpretation function, which is
used in the definition of the semantics. These interpretation functions specify
what meaning the semantics is to assign to applications of user-defined func-
tions. In the next section, we will see a well-formedness criteria that relates the
interpretation functions with the syntax in func body .

4.3 Semantics

Next, we define a semantics of Milawa’s formulas. We present these semantics
in a top-down order. Our topmost definition is validity: a Milawa formula p is
valid, written |=⇡ p, if and only if (1) p is syntactically correct w.r.t. the logical
context ⇡ and (2) p evaluates to true in ⇡ for all variable instantiations i.

(|=⇡ p) = formula ok⇡ p ^ 8i. eval formula i ⇡ p

We define the evaluation of a formula with respect to a particular variable
instantiation i. Our formula evaluator, eval formula i ⇡, is built on top of a term
evaluator, eval term i ⇡, as follows. The syntax overloading can be confusing in
the following definition. On the left-hand side ¬, _ and = are the constructors
for the formula type, while on the right-hand side ¬ and _ are the usual Boolean
connectives and = is HOL’s equality predicate.

eval formula i ⇡ (¬p) = ¬(eval formula i ⇡ p)
eval formula i ⇡ (p _ q) = eval formula i ⇡ p _ eval formula i ⇡ q

eval formula i ⇡ (x = y) = (eval term i ⇡ x = eval term i ⇡ y)
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The definitions above constitute the semantics of Milawa. Clearly, this se-
mantics is intimately dependent on the interpretation functions stored inside
the context ⇡. In order to make sure that these interpretation functions are ‘the
right ones’, i.e., correspond to the syntactic definitions of the user-defined func-
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Note that this is a non-trivial equation since eval term, which appears on the
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soundness of the definition principle requires proving that the termination obli-
gations generated by Milawa imply that our interpetation is total (Section 4.6).
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(a few of the) Inference rules

A similar condition applies to witness functions. If,

⇡(name) = (formals ,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

8args.
(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`⇡ a _ (b _ c)
`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])

8
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of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`⇡ a _ (b _ c)
`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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A similar condition applies to witness functions. If,

⇡(name) = (formals ,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

8args.
(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`⇡ a _ (b _ c)
`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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A similar condition applies to witness functions. If,

⇡(name) = (formals ,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

8args.
(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.
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`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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A similar condition applies to witness functions. If,

⇡(name) = (formals ,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

8args.
(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`⇡ a _ (b _ c)
`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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A similar condition applies to witness functions. If,

⇡(name) = (formals ,Witness prop var , interp)

is true then the following implication must hold. This implication states that, if
there exists some value v such that property prop is true when variable names
var :: formals are substituted for values v :: args in prop, then interp(args)
returns some such value v. Here the test for ‘is true’ is Lisp’s truth test, i.e., ‘not
equal to NIL’. These witness functions are explained in Davis [2].

8args.
(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp func-
tion if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables
of a term, and list to set converts a list to a set.

context ok ⇡ =
(8name formals body interp.

(⇡(name) = (formals ,Body body , interp)) =)
term ok⇡ body ^ all distinct formals ^
list to set (free vars body) ✓ list to set formals ^
8i. interp(map i formals) = eval term i ⇡ body) ^

(8name formals prop var interp.

(⇡(name) = (formals ,Witness prop var , interp)) =)
term ok⇡ prop ^ all distinct (var :: formals) ^
list to set (free vars prop) ✓ list to set (var :: formals) ^
8args.

(9v. eval term [var :: formals 7! v :: args] ⇡ prop 6= NIL) =)
eval term [var :: formals 7! interp(args) :: args] ⇡ prop 6= NIL)

4.4 Inference Rules

Due to space constraints, this section will only sketch a few of Milawa’s 13 in-
ference rules. Two of the simplest are shown below. Here milawa axioms is a set
consisting of the 56 axioms from Davis [2]. Most of these are basic facts about
the primitive functions, e.g. term equality is reflective, symmetric and transitive;
the Less primitive is anti-reflective and transitive, etc.

`⇡ a _ (b _ c)
`⇡ (a _ b) _ c

(associativity)
a 2 milawa axioms

`⇡ a

(basic axiom)

The most complicated inference rule allows induction according to a user-defined
measure over the ordinals up to "0. We omit the presentation of that lengthy
inference rule, which Chapter 6 of Kaufmann et al. [6] explains in detail.
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Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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Soundness of logic

Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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Soundness of logic

Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.

8⇡ name formals body .

context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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Soundness of logic

Apart from the normal inference rules, we also include rules that allow func-
tion definitions to be looked up from the logical context, e.g.

⇡(name) = (formals ,Body body , interp)
`⇡ App (Fun name) (map Var formals) = body

4.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

8⇡ p. context ok ⇡ ^ (`⇡ p) =) (|=⇡ p)

We have proved this statement by induction over the inference rules `⇡. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to "0, for which we need to know that less-than
over these ordinals is well-founded. Fortunately, Kaufmann and Slind [7] had
already formalized this result in HOL4. The soundness of the induction rule
follows almost directly from their result.

The soundness theorem from above lets us immediately prove many reassur-
ing corollaries. For instance, since |=⇡ T = NIL is false and `⇡ T = T is true we
know that Milawa’s inference rules are consistent.

4.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 5.4), we have proved
that the kernel maintains an invariant which states that (1) the current logical
context ⇡ is well-formed, context ok ⇡, and (2) that all theorems the Milawa
theorem prover has accepted are provable using the inference rules based on
that current context ⇡, i.e., for any formula p accepted by the kernel, we have
`⇡ p. However, when new definitions are made the logical context is extended. In
order to maintain our invariant, we must hence show that properties (1) and (2)
carry across context extensions.

Proving that property (1) carries across is straightforward since the syntactic
inference rules only make tests for inclusion in the context.

Proving that well-formedness of the context, i.e., property (2), carries across
context extensions is less straightforward. The main complication is that we
need to find an interpretation for the new function that agrees with the syn-
tax of the new definition. Using HOL’s choice operator, we define a function
new interp (definition omitted) which constructs such an interpretation if such
an interpretation exists. This reduces the goal to proving that an interpretation
exists. For witness functions, this proof is almost immediate. For conventional
functions, this proof required showing that a `⇡-proof of the generated termina-
tion obligations is su�cient to imply that a suitable interpretation exists. Below,
definition ok (definition omitted) requires that certain syntactic conditions are
true and that the termination obligations can be proved.
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context ok ⇡ ^ definition ok (name, formals , body ,⇡) =)
context ok (⇡[name 7! (formals , body , new interp ⇡ name formals body)])
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⇡(name) = (formals ,Body body , interp)
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We state the soundness theorem for Milawa’s inference rules as follows:
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‣ translate (with proof) deep embedding into shallow
‣ prove that Milawa’s (reflective) kernel is faithful to logic
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Semantics of Lisp’s read-eval-print loop:

1.  parse ASCII characters into s-expressions
2.  translate s-expressions into program AST
3.  evaluate program AST
4.  print results, goto 1.

Need to verify program down to concrete source code.
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‣ run the Lisp parser (in the logic) on Milawa’s kernel

5 Correctness of Milawa’s implementation

With logical soundness out of the way, our next goal was to show that the source
code of the Milawa kernel respects the logic’s inference rules.

First, some background: in previous work [13], we introduced the Jitawa Lisp
runtime. Jitawa is able to host the Milawa theorem prover. By this, we mean
that it is able to execute Milawa’s kernel all the way through its bootstrapping

process [2], a long sequence of definitions, proofs and reflective extensions which
ultimately extend the kernel with many high-level proof procedures like those of
NQTHM and ACL2. As part of the Jitawa work, we developed an operational
semantics for the Lisp dialect that Jitawa executes, and proved that the x86
machine code for Jitawa implements this semantics.

Milawa’s kernel is about 2,000 lines of Lisp code. In this section, we explain
how we have proved that this Lisp code is faithful to Milawa’s inference rules
w.r.t. the operational semantics that Jitawa has been proved to implement.

5.1 From ASCII characters to a shallow embedding in HOL4

The top-level Jitawa semantics describes how S-expressions are to be parsed from
an input stream of ASCII characters and then evaluated. One of the simplest
functions in Milawa’s kernel is shown below. This function will be used as a
running example of how we lift Lisp functions into HOL to make interactive
verification manageable.

(defun lookup-safe (a x)
(if (consp x)

(if (equal a (car (car x)))
(if (consp (car x))

(car x)
(cons (car (car x)) (cdr (car x))))

(lookup-safe a (cdr x)))
nil))

When Jitawa reads the ASCII definition of lookup-safe, it parses the lines
above and, as far as its operational semantics is concerned, turns them into a
datatype of the form:

App Define [Const (Sym "LOOKUP-SAFE"),Const (...),Const (...)]

We wrote a custom conversion (based mostly on rewriting) in HOL4 which
parses the source code for Milawa’s 2000-line kernel into abstract datatypes such
as the expression above. The evaluation of the parser happens inside the HOL4
logic, so the result is a theorem of the form string to prog milawa kernel lisp = . . .

9

Each top-level function definition in ASCII
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When

is evaluated, the op. sem. adds a definition to its context:
When Jitawa evaluates the Define expression from above, a definition for

lookup-safe is added to its list of functions. The new entry is:

function name: "LOOKUP-SAFE"
parameter list: "A", "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])

(If (App (PrimitiveFun Equal) [...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))

(Const (Sym "NIL"))

Instead of performing tedious proofs directly over deep embeddings such
as that above, we developed a tool that automatically translates these deep
embeddings into shallow embeddings and, in the process, proves that the shallow
embeddings accurately describe evaluations of the deep embeddings. The details
of this tool are the subject of a separate paper [12], but the net e↵ect of using
it on lookup-safe is easy to see: we get a simple HOL function,

lookup safe a x = if consp x then
if a = car (car x) then

if consp (car x) then
car x

else cons (car (car x)) (cdr (car x))
else lookup safe a (cdr x)

else Sym "NIL"

and a theorem relating the deep embedding to this shallow embedding, stated
in terms of the application relation ap�! of Jitawa’s semantics:

. . . =) (Fun "LOOKUP-SAFE", [a, x], state) ap�! (lookup safe a x, state)

Here state is Jitawa’s mutable state which has, e.g., the I/O streams and the
list of function definitions. The state is not changed by lookup safe because
lookup-safe is a pure function. Extracted impure functions take the state as
input and produce a new state as output, e.g. Milawa’s admit defun function
returns a (value, new-state) pair:

. . . =) (Fun "ADMIT-DEFUN", [cmd , s], state) ap�! (admit defun cmd s state)

5.2 Milawa’s proof checkers and reflection

The largest and most important pure function in Milawa is its initial proof
checker, proofp. This function is given an appeal (an alleged proof) to check. It
walks through the appeal, checking that each proof step is a valid use of some
inference rule. When Milawa starts, it uses proofp to check alleged proofs of
theorems and termination obligations. But the kernel can later be told to start
using some user-defined function, say new-proofp, to check proofs. Typically new-
proofp can accept “higher level” proofs that use new inference rules beyond the

10
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Verification proof

Theorem:

A few details were less straightforward. Each layer has its own abstraction
level, e.g. the kernel and runtime allow macros but these are expanded away
in the logic, and the function table uses S-expression syntax but the runtime’s
operational semantics only sees an abstraction of this syntax. There are also
some language mismatches: the logic has primitives (e.g. ordp and ord-<) which
are not primitive in the runtime, and the runtime has several primitives that
are not part of the logic (e.g., funcall, print, error). To further complicate
things, some of these components can lag behind: the function table starts o↵
mentioning functions that have not yet been defined in the logic. Such functions
can only be defined using exactly the definition given in the function table,
otherwise the defining event, admit-defun or admit-witness, causes a runtime
error. We will explain this invariant in more detail in forthcoming journal article
and/or extensive technical report.

We proved that each event handling function, e.g. admit-thm, admit-defun,
admit-switch etc., maintains the invariant. As a result, the kernel’s top-level
event-handling loop maintains the invariant.

5.4 Theorem: Milawa is faithful to its logic

Milawa’s kernel reads input, processes it, and then prints output that says
whether it has accepted the proofs and definitions it has been given. In order to
make it clearer what Milawa claims to have proved, we extended Milawa with
a new event, (admit-print �), which causes � to be printed if it has already
been proved as a theorem, or else fails. For instance, this new event can print:

(PRINT (THEOREM (PEQUAL* (+ A B) (+ B A))))

We formulate the soundness of Milawa as a guarantee about the possible out-
put: whatever the input, Milawa will only ever print THEOREM lines for formulas
that are true w.r.t. the semantics |=⇡ of the logic. More precisely, we first define
what an acceptable line of output is w.r.t. a given logical context ⇡:

line ok (⇡, l) = (l = "NIL") _
(9n. (l = "(PRINT (n . . . ))") ^ is number n) _
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put lines that satisfy line ok, assuming that no runtime errors were raised during
execution, i.e., that ok is true. Here compute output (definition omitted) is a
high-level specification of what output lines coupled with their respective logical
context the input cmds produces.

9ans k output ok.

milawa main cmds init state = (ans , (k, output , ok)) ^
(ok =) (ans = Sym "SUCCESS") ^

let result = compute output cmds in
every line line ok result ^
output = output string result)
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Top-level correctness theorem:

Correctness of Jitawa Lisp [ITP’11]

This approach works in part because Jitawa’s print function, though used by
Milawa’s kernel, is not made available in the Milawa logic. In other words, a user-
defined function can’t trick us into invalidly printing (PRINT (THEOREM . . . )).

This soundness theorem can be related back to the operational semantics of
Jitawa through the following theorem, which was automatically derived by our
tool for lifting deep embeddings into shallow embeddings:

. . . =) (Fun "MILAWA-MAIN", [input ], state) ap�! (milawa main input state)

6 Top-level soundness theorem

Now we are ready to connect the above soundness result to the top-level correct-
ness theorem for Jitawa, which was proved in previous work [13]. Its top-level
correctness theorem is stated in terms of a machine-code Hoare triple [11], which
can informally be read as saying: if Jitawa’s implementation is started from a
state where enough memory is allocated (init state) and the input stream of
ASCII characters holds input for which Jitawa terminates, then either an error
message is reported or a final state described by exec�! is reached for which ok is
true and output is the final state of the output stream (final state).

{ init state input ⇤ pc pc ⇤ hterminates for inputi }
pc : code for entire jitawa implementation

{ error message _ 9output . h([], input) exec�! (output , true)i ⇤ final state output }

Roughly speaking, exec�! involves parsing some input, evaluating it with ap�! ,
and printing the result. By manually unrolling exec�! to reveal the ap�! relation
for the call of milawa main, it was straightforward to prove our top-level theorem
relating Milawa’s soundness down to the concrete x86 machine code.

This theorem, shown below, can informally be read as follows: if the ASCII
input to Jitawa is the code for Milawa’s kernel followed by a call to Milawa’s
main function on any input input , then the machine-code implementation for
Jitawa will either abort with an error message, or succeed and print line ok
output (according to compute output) followed by SUCCESS. Here strings are
lists of characters, hence the use of list append (++) for strings.

8input pc.

{ init state (milawa implementation++ "(milawa-main ’input)") ⇤ pc pc }
pc : code for entire jitawa implementation

{ error message _ (let result = compute output (parse input) in
hevery line line ok resulti ⇤
final state (output string result ++ "SUCCESS")) }

7 Quirks, bugs and other points of interest

We ran into some surprises during the proof.
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. . . =) (Fun "MILAWA-MAIN", [input ], state) ap�! (milawa main input state)

6 Top-level soundness theorem

Now we are ready to connect the above soundness result to the top-level correct-
ness theorem for Jitawa, which was proved in previous work [13]. Its top-level
correctness theorem is stated in terms of a machine-code Hoare triple [11], which
can informally be read as saying: if Jitawa’s implementation is started from a
state where enough memory is allocated (init state) and the input stream of
ASCII characters holds input for which Jitawa terminates, then either an error
message is reported or a final state described by exec�! is reached for which ok is
true and output is the final state of the output stream (final state).

{ init state input ⇤ pc pc ⇤ hterminates for inputi }
pc : code for entire jitawa implementation

{ error message _ 9output . h([], input) exec�! (output , true)i ⇤ final state output }

Roughly speaking, exec�! involves parsing some input, evaluating it with ap�! ,
and printing the result. By manually unrolling exec�! to reveal the ap�! relation
for the call of milawa main, it was straightforward to prove our top-level theorem
relating Milawa’s soundness down to the concrete x86 machine code.

This theorem, shown below, can informally be read as follows: if the ASCII
input to Jitawa is the code for Milawa’s kernel followed by a call to Milawa’s
main function on any input input , then the machine-code implementation for
Jitawa will either abort with an error message, or succeed and print line ok
output (according to compute output) followed by SUCCESS. Here strings are
lists of characters, hence the use of list append (++) for strings.

8input pc.

{ init state (milawa implementation++ "(milawa-main ’input)") ⇤ pc pc }
pc : code for entire jitawa implementation

{ error message _ (let result = compute output (parse input) in
hevery line line ok resulti ⇤
final state (output string result ++ "SUCCESS")) }

7 Quirks, bugs and other points of interest

We ran into some surprises during the proof.
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