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Ve design our provers to be sound.

We verify programs with them.

Why not prove the theorem provers sound?

This talk: explains how soundness was proved
for the Milawa theorem prover.
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work by Jared Davis

A very short introdution
- Milawa

® Milawa is styled after theorem provers
such as NOQTHM and ACL2,

® has a small trusted logical kernel similar
to LCF-style provers,

® .. but does not suffer the performance
hit of LCF’s fully expansive approach.
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Steps

A.formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation

» compose with the correctness thm from ITP’11

A—C combine to a top-level theorem that relates the
logic’s semantics with the execution of the x86 machine code.
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Serp

pPrIm

func

term

formula

Syntax

Val num | Sym string | Dot sexp sexp

If | Equal | Not | Symbolp | Symbol_less
Natp | Add | Sub | Less | Consp | Cons
Car | Cdr | Rank | Ord_less | Ordp

PrimitiveFun prim
Fun string

Const sexp

Var string

App func (term list)

LamApp (string list) term (term list)

= formula
formula V formula
term = term

S-expression

primitive functions
user-defined

constant S-expression
variable

function application

A formals body actuals

negation
disjunction
term equality
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Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map

from string to string list X func_body X (sexp list — sexp)

A
[ parameters J

|

A
[ semantic interpretation J

[ syntax of body J

func_body ::= Body term

concrete term (e.g. recursive function)

| Witness term string property, element name
| None no function body given
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[ syntax makes sense J [ truth value J

eval_formula i m (—p) —(eval_formula 7 7 p)
eval_formulai 7 (pVq) = evalformulaim pV eval formula i g
eval_formula i 7 (z = y) (eval_term i m x = eval_term i 7 y)

eval_term i 7 (Const c) = c

eval_term ¢ 7w (Var v) = i(v)

eval_term ¢ w (App f xs) = eval_app (f, map (eval_term i 7) xs, )
eval_term ¢ m (LambdaApp vs x xs) = let ys = map (eval_term ¢ 7) xs in

eval_term |[vs — ys| m x

eval_app (PrimitiveFun p, args, )
eval_app (Fun name, args, )

eval_primitive p args
let (_,_,interp) = m(name) in
interp(args)

eval_primitive Add [Val 2,Val 3] = Val 5

eval_primitive Add [Val 2,Sym "a"| = Val 2
eval_primitive Cons [Val 2,Sym "a"| = Dot (Val 2) (Sym "a")
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Semantics only makes sense for well-formed contexts.

For every entry,

w(name) = (formals, Body body, interp)

It must be that:

» 1
» 1
> {

ne formals are all distinct
ne body is well-formed w.r.t. the context

ne interpretation satisfies the defining equation:

Vi. interp(map ¢ formals) = eval_term ¢ w body

Similarly for the other function types.
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(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

facts about Lisp primitives J

a € milawa_axioms

- a

(basic axiom)

[ function definition in context J ( body of function j

V V
w(name) = (formals, Body body, interp)

. App (Fun name) (map Var formals) X body

[ defining equation J
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Soundness of logic

Soundness of inference rules:

vV p. context ok w A (Fr p) = (Fx p)

» induction rule most interesting, Kaufmann&Slind [TPHOLSs’07]

Soundness of definition mechanism:

Vm name formals body.
context_ok 7 A definition_ok (name, formals, body, ) —>
context_ok (w|name — (formals, body, new_interp m name formals body)])

» reg. proving that termination conditions imply that a
semantic interpretation exists as a function in HOL
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Proving Milawa faithful to its logic

Verification must be w.r.t. semantics of Lisp [ITP’11].

Semantics of Lisp’s read-eval-print loop:

1. parse ASCII characters into s-expressions
2. translate s-expressions into program AST
3. evaluate program AST

4. print results, goto 1.

Need to verify program down to concrete source code.
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We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a * = if consp x then
if a = car (car x) then
if consp (car x) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

and produce a certificate theorem relating the deep and
shallow embeddings.

. = (Fun "LOOKUP-SAFE", |a, x|, state) 2P, (lookup_safe a x, state)

A
( name in deep embedding] /\ (shallow embedding]

[ Lisp semantics J
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Verification proof

» prove that Milawa’s (reflective) kernel is faithful to logic

A routine verification exercise.
Points of interest:
Milawa’s initial proof checker was a large function

Top-level loop has complicated invariant, relates:

» program state
» current Lisp op.sem. state
» logical context

Bugs found? Yes, two very minor (no soundness bugs)



Verification proof

Theorem:

dans k output ok.
milawa_main cmds init_state = (ans, (k, output, ok)) N
(ok = (ans = Sym "SUCCESS") A
let result = compute_output cmds in
every_line line_ok result A
output = output_string result)

where

line ok (w,l) = (I ="NIL")V
(In. (I = "(PRINT (n ... ))") Alis_.number n) V
(d¢. (I = "(PRINT (THEOREM ¢))") A contextok w A = ¢)
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4 )
There must be enough memory and

input is Milawa’s kernel followed by

call to main for some input.
g J

Vinput pc. \/

{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc}
pc : code_for_entire_jitawa_implementation

error_message V (let result = compute_output (parse input) in
g
/\ (every_line line_ok result)

final_state (output_string result ++ "SUCCESS")) }
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Machine code terminates either ... output lines that are all true

with error message, or ... w.r.t. the semantics of the logic.
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