The reflective Milawa

theorem prover is sound
down to the machine code that runs it

ITP’14,Vienna

Magnus O. Myreen — Computer Laboratory, University of Cambridge, UK
Jared Davis — Centaur Technology, Inc.,Austin TX, USA

Soundness

Soundness

Ve design our provers to be sound.

Soundness

Ve design our provers to be sound.

We verify programs with them.

Soundness

Ve design our provers to be sound.

We verify programs with them.

Why not prove the theorem provers sound?

Soundness

Ve design our provers to be sound.

We verify programs with them.

Why not prove the theorem provers sound?

This talk: explains how soundness was proved
for the Milawa theorem prover.

Previous work

_JL

g, M) A self-verifying theorem prover

Mllawa Jared Davis — PhD work

Jitawa
verified
LISP

Previous work

A self-verifying theorem prover
Jared Davis — PhD work

A verified runtime for a verified theorem prover
Magnus Myreen, Jared Davis — TP’ [|

Proving Milawa sound

iy -
IMm:

—

Milawa

Milawa theorem prover

(kernel approx. 2000 lines of Milawa Lisp)

[Lisp semantics j

'l’ta.wa Lisp implementation (x86)
Verl fled (approx. 7000 64-bit x86 instructions)

semantics of x86-64 machine j

Proving Milawa sound

Milawa theorem prover

(kernel approx. 2000 lines of Milawa Lisp)

[Lisp semantics j o
jitGWG T on (x86) verification of a Lisp
. isp implementation (x - -
VGI’I](IGd (approx. 7000 64-bit x86 instructions) Implementatlon

[ITP11]

semantics of x86-64 machine j ®

Proving Milawa souna

4 N
semantics of Milawa’s logic

N\ y

r N

inference rules of Milawa’s logic

Milawa theorem prover

(kernel approx. 2000 lines of Milawa Lisp)

[Lisp semantics j o
jitGWG Lo i on (x86) verification of a Lisp
. isp implementation (x - -
VGI’I](IGd (approx. 7000 64-bit x86 instructions) Implementatlon

[ITP11]

semantics of x86-64 machine j ®

Proving Milawa souna

- N
semantics of Milawa’s logic
N y
4 N
inference rules of Milawa’s logic .
rj‘z./-\ \ J This paper
- Milawa theorem prover [ITP"14]
(kernel approx. 2000 lines of Milawa Lisp)
[Lisp semantics j o o
jitawa D on (:B6) verification of a Lisp
. isp implementation (x - :
Vel’lfled (approx. 7000 64-bit x86 instructions) Implementatlon

[ITP11]

semantics of x86-64 machine j ®

work by Jared Davis

A very short introdution
- Milawa

® Milawa is styled after theorem provers
such as NOQTHM and ACL2,

® has a small trusted logical kernel similar
to LCF-style provers,

® .. but does not suffer the performance
hit of LCF’s fully expansive approach.

work by Jared Davis

Comparison with LCF approach

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

core derived rules

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

rewriting

case splitting

core derived rules

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with LCF approach

custom tools

SAT/SMT
FOL provers

simplifier

decision
procedures rewriter

LCF-style approach

e all proofs pass through the
core’s primitive inferences
* extensions steer the core

®

rewriting

case splitting

bootstrapping

core derived rules

the Milawa approach

* all proofs must pass the core
* the core proof checker can be
replaced at runtime

work by Jared Davis

Comparison with L%F_annmarh
The Milawa theorem prover]

V

T8 |

rewriting

custom tools

SAT/SMT
FOL provers

simplifier

decision

procedures rewriter case splitting

bootstrapping

core derived rules

LCF-style approach the Milawa approach

e all proofs pass through the * all proofs must pass the core
core’s primitive inferences * the core proof checker can be

* extensions steer the core replaced at runtime

Steps

Steps

A.formalise Milawa’s logic
» syntax, semantics, inference, soundness

Steps

A.formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic
» run the Lisp parser (in the logic) on Milawa’s kernel

» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

Steps

A.formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation
» compose with the correctness thm from ITP’11

Steps

A.formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation

» compose with the correctness thm from ITP’11

A—C combine to a top-level theorem that relates the
logic’s semantics with the execution of the x86 machine code.

This talk

A. formalise Milawa’s logic
B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

This talk

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

Serp

pPrIm

func

term

formula

Syntax

Val num | Sym string | Dot sexp sexp

If | Equal | Not | Symbolp | Symbol_less
Natp | Add | Sub | Less | Consp | Cons
Car | Cdr | Rank | Ord_less | Ordp

PrimitiveFun prim
Fun string

Const sexp

Var string

App func (term list)

LamApp (string list) term (term list)

= formula
formula V formula
term = term

S-expression

primitive functions
user-defined

constant S-expression
variable

function application

A formals body actuals

negation
disjunction
term equality

Context

Syntax, semantics and inference rules depend on a context.

Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map
from string to string list X func_body X (sexp list — sexp)

Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map

from string to string list X func_body X (sexp list — sexp)
A

[parameters J

Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map

from string to string list X func_body X (sexp list — sexp)
A |
[parameters J

[syntax of body J

Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map
from string to string list X func_body X (sexp list — sexp)

A |
[parameters J
[syntax of body J
func_body ::= Body term concrete term (e.g. recursive function)
| Witness term string property, element name

| None no function body given

Context

Syntax, semantics and inference rules depend on a context.

A context is a finite partial map

from string to string list X func_body X (sexp list — sexp)

A
[parameters J

|

A
[semantic interpretation J

[syntax of body J

func_body ::= Body term

concrete term (e.g. recursive function)

| Witness term string property, element name
| None no function body given

Semantics

Semantics

(Fxp) = formula_ok; p A Vi.eval formulaim p

Semantics

(Fxp) = formula_ok; p A Vi.eval formulaim p
A

[syntax makes sense J

Semantics

(Fxp) = formula_ok; p A Vi.eval formulaim p

[syntax makes sense J [truth value J

Semantics

(Fxp) = formula_ok; p A Vi.eval formulaim p

[syntax makes sense J [truth value J

eval_formula i m (—p) = —(eval_formula i 7 p)
eval_formula i 7w (p V q) eval_formula i 7w p V eval_formula i 7 g
eval_formula i 7 (z = y) (eval_term i m x = eval_term i 7 y)

|

Semantics

(Fxrp) = formulaok; p A Vi.eval formulaim p

[syntax makes sense J [truth value J

eval_formula i m (—p) —(eval_formula 7 7 p)
eval_formulai 7 (pVq) = evalformulaim pV eval formula i g
eval_formula i 7 (z = y) (eval_term i m x = eval_term i 7 y)

eval_term i 7 (Const c) = c

eval_term ¢ 7w (Var v) = i(v)

eval_term ¢ w (App f xs) = eval_app (f, map (eval_term i 7) xs,)
eval_term ¢ m (LambdaApp vs x xs) = let ys = map (eval_term ¢ 7) xs in

eval_term |[vs — ys| m x

Semantics

(Fxrp) = formulaok; p A Vi.eval formulaim p

[syntax makes sense J [truth value J

eval_formula i m (—p) —(eval_formula 7 7 p)
eval_formulai 7 (pVq) = evalformulaim pV eval formula i g
eval_formula i 7 (z = y) (eval_term i m x = eval_term i 7 y)

eval_term i 7 (Const c) = c

eval_term ¢ 7w (Var v) = i(v)

eval_term ¢ w (App f xs) = eval_app (f, map (eval_term i 7) xs,)
eval_term ¢ m (LambdaApp vs x xs) = let ys = map (eval_term ¢ 7) xs in

eval_term |[vs — ys| m x

eval_app (PrimitiveFun p, args,)
eval_app (Fun name, args,)

eval_primitive p args
let (_,_,interp) = m(name) in
interp(args)

Semantics

(Fxrp) = formulaok; p A Vi.eval formulaim p

[syntax makes sense J [truth value J

eval_formula i m (—p) —(eval_formula 7 7 p)
eval_formulai 7 (pVq) = evalformulaim pV eval formula i g
eval_formula i 7 (z = y) (eval_term i m x = eval_term i 7 y)

eval_term i 7 (Const c) = c

eval_term ¢ 7w (Var v) = i(v)

eval_term ¢ w (App f xs) = eval_app (f, map (eval_term i 7) xs,)
eval_term ¢ m (LambdaApp vs x xs) = let ys = map (eval_term ¢ 7) xs in

eval_term |[vs — ys| m x

eval_app (PrimitiveFun p, args,)
eval_app (Fun name, args,)

eval_primitive p args
let (_,_,interp) = m(name) in
interp(args)

eval_primitive Add [Val 2,Val 3] = Val 5

eval_primitive Add [Val 2,Sym "a"| = Val 2
eval_primitive Cons [Val 2,Sym "a"| = Dot (Val 2) (Sym "a")

Well-formedness of context

Semantics only makes sense for well-formed contexts.

Well-formedness of context

Semantics only makes sense for well-formed contexts.

For every entry,

w(name) = (formals, Body body, interp)

It must be that:

» 1
» 1
> {

ne formals are all distinct
ne body is well-formed w.r.t. the context

ne interpretation satisfies the defining equation:

Vi. interp(map ¢ formals) = eval_term ¢ w body

Well-formedness of context

Semantics only makes sense for well-formed contexts.

For every entry,

w(name) = (formals, Body body, interp)

It must be that:

» 1
» 1
> {

ne formals are all distinct
ne body is well-formed w.r.t. the context

ne interpretation satisfies the defining equation:

Vi. interp(map ¢ formals) = eval_term ¢ w body

Similarly for the other function types.

(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

a € milawa_axioms

- a

(basic axiom)

w(name) = (formals, Body body, interp)

=+ App (Fun name) (map Var formals) = body

(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

facts about Lisp primitives J

a € milawa_axioms

- a

(basic axiom)

w(name) = (formals, Body body, interp)

=+ App (Fun name) (map Var formals) = body

(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

facts about Lisp primitives J

a € milawa_axioms

- a

(basic axiom)

[function definition in context J

V

w(name) = (formals, Body body, interp)
=+ App (Fun name) (map Var formals) = body

(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

facts about Lisp primitives J

a € milawa_axioms

- a

(basic axiom)

[function definition in context J (body of function j

V V
w(name) = (formals, Body body, interp)

=+ App (Fun name) (map Var formals) = body

(a few of the) Inference rules

FraV (bVc)
Fr (aVb)Ve

(associativity)

facts about Lisp primitives J

a € milawa_axioms

- a

(basic axiom)

[function definition in context J (body of function j

V V
w(name) = (formals, Body body, interp)

. App (Fun name) (map Var formals) X body

[defining equation J

Soundness of logic

Soundness of inference rules:

vV p. context ok w A (Fr p) = (Fx p)

Soundness of logic

Soundness of inference rules:

vV p. context ok w A (Fr p) = (Fx p)

» induction rule most interesting, Kaufmann&Slind [TPHOLSs’07]

Soundness of logic

Soundness of inference rules:

vV p. context ok w A (Fr p) = (Fx p)

» induction rule most interesting, Kaufmann&Slind [TPHOLSs’07]

Soundness of definition mechanism:

Vm name formals body.
context_ok 7 A definition_ok (name, formals, body,) —>
context_ok (w|name — (formals, body, new_interp m name formals body)])

Soundness of logic

Soundness of inference rules:

vV p. context ok w A (Fr p) = (Fx p)

» induction rule most interesting, Kaufmann&Slind [TPHOLSs’07]

Soundness of definition mechanism:

Vm name formals body.
context_ok 7 A definition_ok (name, formals, body,) —>
context_ok (w|name — (formals, body, new_interp m name formals body)])

» reg. proving that termination conditions imply that a
semantic interpretation exists as a function in HOL

This talk

A. formalise Milawa’s logic

C. connect the verified Lisp implementation

This talk

A. formalise Milawa’s logic

B. prove that Milawa's kernel is faithful to the logic

C. connect the verified Lisp implementation

This talk

A.formalise Milawa’s logic

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation

Proving Milawa faithful to its logic

Verification must be w.r.t. semantics of Lisp [ITP’11].

Proving Milawa faithful to its logic

Verification must be w.r.t. semantics of Lisp [ITP’11].

Semantics of Lisp’s read-eval-print loop:

Proving Milawa faithful to its logic

Verification must be w.r.t. semantics of Lisp [ITP’11].

Semantics of Lisp’s read-eval-print loop:

. parse ASCII characters into s-expressions
. translate s-expressions into program AST
evaluate program AST

A wp o=

print results, goto 1.

Proving Milawa faithful to its logic

Verification must be w.r.t. semantics of Lisp [ITP’11].

Semantics of Lisp’s read-eval-print loop:

1. parse ASCII characters into s-expressions
2. translate s-expressions into program AST
3. evaluate program AST

4. print results, goto 1.

Need to verify program down to concrete source code.

Steps towards an easier verification

» run the Lisp parser (in the logic) on Milawa’s kernel

Steps towards an easier verification

» run the Lisp parser (in the logic) on Milawa’s kernel

Each top-level function definition in ASCI|

(defun lookup-safe (a x)
(if (consp x)
(if (equal a (car (car x)))
(if (consp (car x))
(car x)
(cons (car (car x)) (cdr (car x))))
(lookup-safe a (cdr x)))
nil))

Steps towards an easier verification

» run the Lisp parser (in the logic) on Milawa’s kernel

Each top-level function definition in ASCI|

(defun lookup-safe (a x)
(if (consp x)
(if (equal a (car (car x)))
(if (consp (car x))
(car x)
(cons (car (car x)) (cdr (car x))))
(lookup-safe a (cdr x)))
nil))

becomes a program AST

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

Steps towards an easier verification

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

Steps towards an easier verification

When

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

IS evaluated, the op. sem. adds a definition to its context:

Steps towards an easier verification

When

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

IS evaluated, the op. sem. adds a definition to its context:

function name: "LOOKUP-SAFE"
parameter list: "A", 6 "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])
(If (App (PrimitiveFun Equal) |...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))
(Const (Sym "NIL"))

Steps towards an easier verification

When

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

IS evaluated, the op. sem. adds a definition to its context:

function name: "LOOKUP-SAFE"
parameter list: "A", 6 "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])
(If (App (PrimitiveFun Equal) |...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))
(Const (Sym "NIL"))

We could do verification over this deep embedding.

Steps towards an easier verification

When

App Define [Const (Sym "LOOKUP-SAFE"), Const (...), Const (...)]

IS evaluated, the op. sem. adds a definition to its context:

function name: "LOOKUP-SAFE"
parameter list: "A", 6 "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])
(If (App (PrimitiveFun Equal) |...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))
(Const (Sym "NIL"))

We could do verification over this deep embedding.

...but a shallow embedding is easier to work with.

Steps towards an easier verification

function name: "LOOKUP-SAFE"
parameter list: "A" "X"
function body: If (App (PrimitiveFun Consp) [Var "X"])
(If (App (PrimitiveFun Equal) |...])
(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))
(Const (Sym "NIL"))

We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a x = if consp x then
if a = car (car x) then
if consp (car) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

Steps towards an easier verification

We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a * = if consp x then
if a = car (car x) then
if consp (car x) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

and produce a certificate theorem relating the deep and
shallow embeddings.

. = (Fun "LOOKUP-SAFE", |a, x|, state) 2P, (lookup_safe a x, state)

Steps towards an easier verification

We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a * = if consp x then
if a = car (car x) then
if consp (car x) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

and produce a certificate theorem relating the deep and
shallow embeddings.

. = (Fun "LOOKUP-SAFE", |a, x|, state) 2P, (lookup_safe a x, state)

A
(name in deep embedding]

Steps towards an easier verification

We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a * = if consp x then
if a = car (car x) then
if consp (car x) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

and produce a certificate theorem relating the deep and
shallow embeddings.

. = (Fun "LOOKUP-SAFE", |a, x|, state) 2P, (lookup_safe a x, state)

A
(name in deep embedding J (shallow embedding]

Steps towards an easier verification

We translate deep embedding into convenient shallow emb.
[ITP’12]
lookup_safe a * = if consp x then
if a = car (car x) then
if consp (car x) then
car x
else cons (car (car x)) (cdr (car x))
else lookup_safe a (cdr x)
else Sym "NIL"

and produce a certificate theorem relating the deep and
shallow embeddings.

. = (Fun "LOOKUP-SAFE", |a, x|, state) 2P, (lookup_safe a x, state)

A
(name in deep embedding] /\ (shallow embedding]

[Lisp semantics J

Verification proof

» prove that Milawa’s (reflective) kernel is faithful to logic

A routine verification exercise.

Verification proof

» prove that Milawa’s (reflective) kernel is faithful to logic

A routine verification exercise.
Points of interest:
Milawa’s initial proof checker was a large function

Top-level loop has complicated invariant, relates:

» program state
» current Lisp op.sem. state
» logical context

Verification proof

» prove that Milawa’s (reflective) kernel is faithful to logic

A routine verification exercise.
Points of interest:
Milawa’s initial proof checker was a large function

Top-level loop has complicated invariant, relates:

» program state
» current Lisp op.sem. state
» logical context

Bugs found?

Verification proof

» prove that Milawa’s (reflective) kernel is faithful to logic

A routine verification exercise.
Points of interest:
Milawa’s initial proof checker was a large function

Top-level loop has complicated invariant, relates:

» program state
» current Lisp op.sem. state
» logical context

Bugs found? Yes, two very minor (no soundness bugs)

Verification proof

Theorem:

dans k output ok.
milawa_main cmds init_state = (ans, (k, output, ok)) N
(ok = (ans = Sym "SUCCESS") A
let result = compute_output cmds in
every_line line_ok result A
output = output_string result)

where

line ok (w,l) = (I ="NIL")V
(In. (I = "(PRINT (n ...))") Alis_.number n) V
(d¢. (I = "(PRINT (THEOREM ¢))") A contextok w A = ¢)

This talk

A. formalise Milawa’s logic

B. prove that Milawa's kernel is faithful to the logic

Correctness of Jitawa Lisp [ITP'11]

Top-level correctness theorem:

{init_state input * pc pc * (terminates_for input) }

pc : code_for_entire_jitawa_implementation
exec

{ error_message V Joutput. {(||, input) (output, true)) final_state output }

Correctness of Jitawa Lisp [ITP'11]

4)
There must be enough

memory and /O
assumptions must hoId.Jness theorem:

\

{init_state input * pc pc * (terminates_for input) }

-

pc : code_for_entire_jitawa_implementation
exec

{ error_message V Joutput. {(||, input) (output, true)) final_state output }

Correctness of Jitawa Lisp [ITP'11]

4)
There must be enough

memory and /O
assumptions must hoId.Jness theorem:

\

{init_state input * pc pc * (terminates_for input) }

-

pc : code_for_entire_jitawa_implementation
{ error_message V Joutput. {(||, input) 5 (output, true)) * final_state output }

A\

4)
Each execution is

allowed to fail with

an error message.
- J

Correctness of Jitawa Lisp [ITP'11]

4)
There must be enough

memory and /O
assumptions must hoId.Jness theorem:

\

{init_state input * pc pc * (terminates_for input) }

-

pc : code_for_entire_jitawa_implementation
{ error_message V Joutput. {(||, input) 5 (output, true)) * final_state output }

A\ A

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Correctness of Jitawa Lisp [ITP'11]

4 N\)
There must be enough This machine-code Hoare
memory and I/O triple holds only for

\assumptions must hoId.Jne\ terminating executions.

J

\ %

{init_state input * pc pc * (terminates_for input) }
pc : code_for_entire_jitawa_implementation
{ error_message V Joutput. {(||, input) 5 (output, true)) * final_state output }

A\ A

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Correctness of Jitawa Lisp [ITP'11]

4 N\)
There must be enough This machine-code Hoare
memory and I/O triple holds only for

\assumptions must hoId.Jne\ terminating executions.

J

Vv V
{init_state input *PC pe % <.term|nates_f.or input) } st of numbers)
pc : code_for_entire_jitawa_implementation -
{ error_message V Joutput. {(||, input) 5 (output, true)) * final_state output }

A\ A

4) 4)
Each execution is If there is no error message,
allowed to fail with then the result is described by
an error message. the high-level op. semantics.

- J - J

Theorem: Milawa i1s sound down to x86

Vinput pc.
{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc}
pc : code_for_entire_jitawa_implementation

{ error_message V (let result = compute_output (parse input) in
(every_line line_ok result)
final_state (output_string result ++ "SUCCESS")) }

Theorem: Milawa i1s sound down to x86

4)
There must be enough memory and

input is Milawa’s kernel followed by

call to main for some input.
g J

Vinput pc. \/

{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc}
pc : code_for_entire_jitawa_implementation

{ error_message V (let result = compute_output (parse input) in
(every_line line_ok result)
final_state (output_string result ++ "SUCCESS")) }

Theorem: Milawa i1s sound down to x86

4)
There must be enough memory and

input is Milawa’s kernel followed by

call to main for some input.
g J

Vinput pc. \/

{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc}
pc : code_for_entire_jitawa_implementation

{ error_message V (let result = compute_output (parse input) in
(every_line line_ok result)
/\ final_state (output_string result ++ "SUCCESS")) }

r N
Machine code terminates either

with error message, or ...
\ J

Theorem: Milawa i1s sound down to x86

4)
There must be enough memory and

input is Milawa’s kernel followed by

call to main for some input.
g J

Vinput pc. \/

{init_state (milawa_implementation ++ " (milawa-main ’input)") * pc pc}
pc : code_for_entire_jitawa_implementation

error_message V (let result = compute_output (parse input) in
g
/\ (every_line line_ok result)

final_state (output_string result ++ "SUCCESS")) }

A\
4 N p

Machine code terminates either ... output lines that are all true

with error message, or ... w.r.t. the semantics of the logic.
\ AN Y

Summary

Summary

The top-level theorem:

relates the logic’s semantics
with the execution of the x86 machine code.

Summary

The top-level theorem:

relates the logic’s semantics
with the execution of the x86 machine code.

Steps:

A. formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation
» compose with the correctness thm from ITP’11

Summary

The top-level theorem: Questions?

relates the logic’s semantics
with the execution of the x86 machine code.

Steps:

A. formalise Milawa’s logic
» syntax, semantics, inference, soundness

B. prove that Milawa's kernel is faithful to the logic

» run the Lisp parser (in the logic) on Milawa’s kernel
» translate (with proof) deep embedding into shallow
» prove that Milawa’s (reflective) kernel is faithful to logic

C. connect the verified Lisp implementation
» compose with the correctness thm from ITP’11

