A Verified Generate-Test-Aggregate Coq Library
for Parallel Programs Extraction

Kento EMOTO
Kyushu Institute of Technology, Japan

Joint work with Frédéric Loulergue and Julien Tesson
Université d'Orléans and Université Paris-Est, France

Background & Motivation

» Parallel programming is necessary, but not easy
Parallelism is the only way to gain performance
Writing/maintaining code with low—level parallelism is difficult

» High—level parallel programming has been proposed

(e.g., skeletal parallel programming [Cole 89])

Writing code by composing building blocks hiding low—level parallelism
Easy to write/maintain parallel programs

» Generate—test—aggregate programming [Emoto et al. ESOP ’ 12]
NaTve program = composition of generator, tester and aggregator
Theory to derive efficient implementation from a naive program
Prototype Scala library with automatic derivation [Liu et al. PMAM’ 13]

» Question: Is such a library correctly implemented?
» This study: Verified generate—test—aggregate library on Coq

Generate-Test-Aggregate Coq Library

-~ User Program ~~ _________ Building Blocks ________
Specifications/Axiomatizations \

spec = A "'E"":L"> GJ)A) \
GTA Fusion Theorems

. IIA E:}Zb Impl.

Efficient

o

Q)]

o,

<
=2
_ g_s*.
Q Tl
15 C
o 2.
3 3

. E Axiomatization/Specification
Coq verified N of Parallel Library: BSML

o - — - —— o — ——

extraction
= OCaml ahd BSML

I
|
i Implementation
: compilation

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

Native Code Language/Library Runtime, OS, ---

’---------- I I N

Generate—Test—Agg_rgg_ate Coq_I;il;)r_aIy
N

{ User Program Building Blocks B-----—- R
| Specifications/Axiomatizations I Y
: spec = G T A > :
| . . L:
| User’ s point of view Iimpl. |
| I !
\ \ / !
N T——— :/--\-r-wwmw’l'rn-_ /::
o E Axiomatization/Specification E
Coq verified N of Parallel Library: BSML Y
extraction
.- OCaml & d BSML Provides a set of primitive

operations of the BSP (Bulk
Synchronous Parallel) model

I
|
i Implementation
: compilation

Native Code Language/Library Runtime, OS, ---

Running Example: 0-1 Knapsack Problem

» Given a knapsack and a set of items, find the most
valuable selection of items adhering to the knapsack’ s
weight restriction

Writing Your Naive Code in GTA Form

Definition naive prog = aggregate :0: test :o:

Generate all candidate substructures of the input
Test and discard unnecessary candidates

Aggregate the valid candidates to make the final result

Writing Your Naive Code in GTA Form

Definition knapsack w := maxValue :0: validWeight w :0: allSelections.

allSelects generates all item selections
validWeight filters out selections with total weight heavier than w

maxValue takes the maximum total value (for simplicity, value only)

Given a knapsack and a set of items, find the most valuable selection of
items adhering to the knapsack s weight restriction

Q ‘j W,
3kg, 2kg, 1kg, 2kg,
53% $40 $50 530

---Writing Your Naive Code---

Generator: Generating All Candidates

Definition knapsack w := maxValue :0: validWeight w :0: allSelections.

ngnerate - [A] > { [A]]
{ X }is the type of bags (multi—sets) of X

» You may design your generators, but it is not easy

» The library provides a set of ready—made generators
subs for all sublists

segs/inits/tails for all contiguous sublists/prefixes/suffixes

» For the knapsack problem, we choose the subs generator:

K Definition allSelections := subs . /

---Writing Your Naive Code---

Tester: Discarding Invalid Candidates

Definition knapsack w := maxValue :0: validWeight w :0: allSelections.
/\

ﬁcest:{[A]}—>{[A]} \
A filter operation of a bag with predicate p of a specific kind

Definition p := ok :o: fold_right (©) Ig :0: map f
ok : a lightweight judgment
O : a monoid operator with the identity element ig

(Monoid: an associative binary operator with its identity element)

» For the knapsack problem, p checks the total weight:

Definition totalWeight := fold_right (+) 0 :0: map getWeight .
Definition p w := (fun a => a <= w) :0: totalWeight .

\ Definition validWeight w = filter (p w). /

---Writing Your Naive Code---

Aggregator: Making the Final Result

Definition knapsack w := maxValue :0: validWeight w :0: allSelections.
/

ﬁaggregate ~{[A]l}—> S \
S is a type of the final result

» You may design your aggregators, but it is not easy

» The library provides a set of ready—made aggregators
maxsum f for finding the maximum f—weighted sum
sumprod f, count, maxsumSolution f, longest, top—k variants, -

» For the knapsack problem, we can use the maxsum aggregator:

Definition maxValue := maxsum getValue .

_ /

(TS s mmmmmmm ey
1
i
\

All You Need to Do

Definition allSelections := subs .

Definition totalWeight := fold_right (+) 0 :0: map getWeight .
Definition p w := (fun a => a <= w) :0: totalWeight .

Definition validWeight w := filter (p w).

Definition maxValue := maxsum getValue .

Definition knapsack w := maxValue :o: validWeight w :0: allSelections.

(* check the naive program *)
Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2]).
(* small proofs related to the naive program *)
Program Instance totalWeight_ monoidOp :

iIsUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid.
Program Instance proper _getWeight : Proper (eq_item ==> eq) getWeight.
Next Obligation. (* omit *) Defined.

Definition knapsack opt w = fused (tgt := knapsack w). (* auto derivation*)

11

35
30
25
20
19
10

9

0

Experiment Results on Extracted Code

» knapsack_opt (auto optimized, parallelized knapsack)
has been extracted to OCaml + BSML (BSP primitives)

» Cost is linear in #items,
although the naive program looks an exponential cost program

» Good speedup (except for the fully busy case)
64GB shared memory, 48 cores = 12 cores x 4 processors

Execution Time (s)

25
,/”’ 20
_— 15
/
/ 10
yd 5
‘/ T] 0
0 500000 1000000
#Hitems

12

Speedup

//’,/"

e

d

0

20 40
#cores

Generate-Test-Aggregate Coq Library

Definition knapsack w Buildi
_ uilding Blocks ________
= maxValue :o: validWeight w ‘0 aIISeIectlons &

. opounications/Axiomatizations

AUtO Fusion | GTA Fusion Theorems

|

|

Mechanism Impl. :
) TAIDAD 5
|

A

— o o o e o o

---------- Efficient

—————————————————————————————

BN Axiomatization/Specification
Coq verified | #——— of Parallel Library: BSML

o - — - — o — ——

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

13

age/Library Runtime, OS, -

Generate-Test-Aggregate Coq Library

Definition knapsack w o e i i R G RINCK S o

:.: maxValue -o: validWg? Specifications/Axiomatizations \\ R
; a)a) I
i Auto Fusion | GTA Fusion Theorems [

GJAID(Efficient b

Internal of t

Mechanism |3|- i
TJIA E>B3 I i
ne Library

o - — - — o — ——

Provides a set of primitive
operations of the BSP (Bulk
------------------- | Synchronous Parallel) model

__

Derived Implementation of knapsack

» E.g., knapsack opt 2kg [(1kg, $10), (1kg, $20), (2kg, $20)]

IS I
= postproc (Okg $0 ® Okg $0 ® Okg $0)
1kg $10 1kg $20 2kg $20
T — —
—— —— Oke $0
= postproc (Okg $0 ® Okg $0) =postproc (qxs $20)
kg $20 2kg $20 2kg $30
= $30

Parallel time complexity: O(wn/p + w? log p) (n = #items, p = #cores)

» Auto—derivation mechanism derives this
by using two verified transformation theorems

15

__

Automatic Fusion

» Fusion: eliminating intermediate data structures between two funcs:
E.g, map f (map g x) = map (f :0: g) x
» Basic idea: Use the typeclass resolver for an automatic search

Auto—parallelization has been implemented by the same tech. [Tesson 11]

» Two typeclasses: Fusion for a rule DB and Fuser for a trigger

Class Fusion (producer : B => C) (consumer : C —> D) (fused : B —> D) :={

_spec : forall b, consumer (producer b) === fused b }.

Class Fuser (tgt : B —> D) =
fused : B —> D; spec : forall b, tgt b === fused b }.

Global Program Instance fuser {fusion : Fusion producer consumer fused}
g Fuser (consumer :o: producer) := { fused := fused; spec := spec }.

16

..

...

Automatic Fusion Mechanism

3rd replaced with

» Definition opt := fused (tgt := f :o: h)ﬁ fh fused

\ 1st looking for an instance of Fuser (f :0: h)

2" looking for an instance of Fusion h f _}

\

~

-~

/
‘ Fusion p ¢ _fused => Fuser (c :0: p)]

~N

Fusion g f fg fused (% h :0: f === hf fused *)

—

Fusion h f th fused

(k f :0: g === fg fused *)

N J { J Fusion f h hf_fused

(k f :0: h === fh_fused *)

Fusion f f ff fused (% h :o: g === hg fused %)

g J Fusion g h hg fused

|

-

. - —— ———— ——— — —
__

Instance pool ! (k% f:0: f === ff fused *)

——

|

TN o o o e e o o e e e e e e o

__

Verified Fusion Theorems

» Filter—embedding Fusion [T][A] :{>[X] .

New aggregator does computation on tables

fTheorem filterEmbeddingFusion
“(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
“(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,

. (aggregate :o: test) x === (postproc :0: nestedFolds mkTable semiringOnTables) X.

» Semiring Fusion [GIA] :>[Efﬁcient]

A kind of shortcut fusion (substitution of consumer’ s operators)

- N\
Theorem semiringFusion
“(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
“(c2 : isSemiringPolymorphicGenerator generate polygen)

- forall x, (aggregate :0: generate) x === (polygen f (oplus, otimes, ep, et)) x.

18

Other Applications Include...

» More restriction on selections in the Knapsack Problem
E.g., “Item B must be contained if item C is contained”,
“The number of items with value > $100 is at most 5,
“Select an even number of items”, etc.

Your GTA program can have multiple testers

» Finding the most likely sequence of hidden events from
a sequence of observed events (Viterbi and its variants)

» Finding the longest (most valuable) segment (region)
satisfying a set of conditions

» etc

19

Conclusion

» A Verified Generate—Test—Aggregate Coq Library
Equipped with an automatic fusion mechanism
Proofs of two fusion theorems

You can write an easy—to—design/verify/modify naive program,
but get an efficient parallel program

Extracted code runs on BSML/OCaml on parallel machines
Axiomatization/Implementation of Bags, typeclass—based Maps,
Monoid semiring (algebra of tables), -

» Subjects in future studies
Extension of the theory to trees and graphs
Use of efficient implementation of ‘tables’
Code extraction for execution on Hadoop/MapReduce

20

21

Thank you for listening.

Visit the following URL for the library code:
http://traclifo.univ—orleans.fr/SyDPaCC

Systematic Development of Programs for
Parallel and Cloud Computing

http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC

SyDPaCC: Systematic Development of
Programs for Parallel and Cloud Computing

L]

L]
—_——— e e = =g =

L]

Axiomatization/Specification
of Parallel Library

Native Code Language/Library Runtime, OS, ---

o e o e o - = o

Finitization and Automatic Finitization

» Making the range R of the homomorphism in a filter is
important to the performance of the derived program

The cost of the multiplication operator on tables: O(|R|?)

» We can use { x : nat | x <=w + 1 } as R, instead of nat,
for Definition p := comparison_with w :0: sum_of nats
The comparison may be (<= w), (==w), O=w), (==)

(k% automatic finitization of the predicate *)

Definition weightLimit’ (w : nat) := rewrite_p (p := weightLimit w).
Definition validWeight' (w : nat) := filterB (weightLimit’ w) dec_spec.
Definition knapsack’ (w : nat) := maxvalue :0: validWeight' w :o: subs.

(** The linear cost program. *)
Definition knapsack’_opt (w : nat) := Eval simpl in fused (f := knapsack’ w).

25

;ti?:l(’)?;;;obrzzding Fusion [T][A] fl> m pp

__

e

Theorem filterEmbeddingFusion

“(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)

“(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)

: forall x,

. (aggregate :0: test) x === (postproc :0: nestedFolds mkTable semiringOnTables) X. |

» The first condition says
an aggregator is a nested folds with semiring operators:

Definition nestedFolds f (®, ®, iy, i)
= fold,,, (®) is :0: map,,, (fold_right (®) iy :0: map).

Semiring: monoid op. ® distributes over commutative monoid op. @,
and iy is the absorbing element of ® .

» New aggregator does computation on tables

26

The structure of tables is derived from the tester & aggregator

..

...

;tifgil(’)?;;iobrzzding Fusion [T][A] $m pp

()
Theorem filterEmbeddingFusion

“(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
“(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
. (aggregate :0: test) x === (postproc :0: nestedFolds mkTable semiringOnTables) X. |

» New aggregator does computation on tables

» For the knapsack problem with w = 2kg,

mkTable (“1kg, $10”) =
1kg $10

postproc (- $0)= $30 Definition totalWeight
kg $30 = foldr (+) 0 :0: map getWeight.
2kg $20 Definition p w
e $50 = (fun a => a<=w) :o: totalWeight .

27

1st Fusion Theorem:

Filter-embedding Fusion

» Two table merge operations ® and ® (w = 2kg)

..............

un

[

A

Okg $0 ® Okg $0 = Okg $0 maximum)
ke $30 o%kg $20 ke $30
o%kg $10 %kg $20
kg $0 ® kg $0 = Okg $0 combination)
ke $30 %kg $20 kg $30
2kg $10 2kg $20

3kg* $50

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary.
This finitization of tables can be done automatically in a similar way to the fusion

28

Semiring Fusion G| AJCY(Efficient)

Theorem semiringFusion

“(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
“(c2 : isSemiringPolymorphicGenerator generate polygen)
: forall x, (aggregate :0: generate) x === (polygen f oplus otimes ep et) x.

» The second condition (instance) says
generate = polygen + “constructors of bags of lists”, and

polygen accepts any semiring operators (i.e., polymorphic)
» Constructors of basg of lists:
Cross—concatenation: {x, y} X, {z, w} = { x++z, x++w, y++z, y++w}
Union: {x, vy} U {z, w} =1{x, v, z, w}
» Definition poly subs f (op, ot, ep, et)
= fold_right ot et :0: map (fun x => op (f x) et)
» Definition subs := poly_subs (fun x =>{[x] D (x_,)(U) {[]} {]

Eg,subs [1,2]=C{[1]} U{[]}) x, C{OTYU{[]})
tOL 01 < 2L D1y=1{012], [1], [2], []}

29

Property of Polymorphic Functions

Class isSemiringPolymorphicFunction
(pgen : forall {V:Type}, (T => V) => (V-DV->V) —> (V->V->V) => (V) => (V) —> V)
:={semiringPolymorphism :
forall {V:Type} (f : T —> V) (oplus : V->V->V) (otimes : V-OV->V) (ep et : V),
FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS ET)
= pgen f oplus otimes ep et

» All instances of a polymorphic function act in the same way.

Evaluation of a computation tree constructed by a polymoprhic
function produces the same result as computing the result
directly by the polymorphic function

30

FreeSemiring and its Homomorphism

Inductive FreeSemiring :=

FS F: T —-> FreeSemiring

FS_OPLUS : FreeSemiring —> FreeSemiring —> FreeSemiring
FS_ OTIMES : FreeSemiring —> FreeSemiring —> FreeSemiring
FS_EP : FreeSemiring

FS ET : FreeSemiring.

Fixpoint FSHom {V:Type} (f : T => V) (oplus otimes : V->V->V) (ep et : V) (x)
= match x with
FSFa=>fa
FS OPLUS | r =>

oplus (FSHom f oplus otimes ep et |) (FSHom f oplus otimes ep et r)
FS OTIMES | r =>

otimes (FSHom f oplus otimes ep et) (FSHom f oplus otimes ep et r)
FS EP => ep
FS ET => et
end.

Semiring (®,®,0, 1)
» Associativity: X ® (y @ z) = (X @ y) @ Z
X ® (y® 2z) = (X®Yy) ® 7z
» Commutativity: X @ y =y & X
» Distributivity: X ® (y © z) = (X ® y) © (X ® Z)
» Identities: X ®0=0®X=X
X® 1 =1 ® X =X
» Absorbing: X ® 0=0® X =0

Semiring (&,®,0,1)
= Monoid (®, 1) + Commuataive Monoid (&, 0)
+ Distributivity + Absorbing

32

Monoid Semiring

» Given a semiring (&,®,0, 1) on S and monoid (®, e) on M,
we can make a new semiring on linear combinations (tables).

Linear combination: s; m; + :*- + s, _m, (table view: TR)

Addition: s, m+s,m=(s; ® s,) m
(otherwise no effect) m, s,

Multiplication:
(symy+--+s,m)x({;n+--+tn)
=(s;® t)(m ©n)+--+(s, ® t;) (m ®n,)
4 e
+(s;® t)(myon)+--+(s @ t)(m @n)

33

All Assignments Generator

» assign [T,F] [a, b, c]

={ [(a, T), (b, T), (c, T)],
(a, T), (b, T), (c, F)],
(a, T), (b, F), (¢, T)],
(a, T), (b, F), (¢, F)],
(a, F), (b, T), (c, T],
(a, F), (b, T), (¢, F)],
(a, F), (b, F), (¢, T)],
(a, F), (b, F), (c, F)] }

34

