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Background & Motivation 
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 Parallel programming is necessary, but not easy 
 Parallelism is the only way to gain performance 

 Writing/maintaining code with low-level parallelism is difficult 

 High-level parallel programming has been proposed 
 (e.g., skeletal parallel programming [Cole 89]) 
 Writing code by composing building blocks hiding low-level parallelism 

 Easy to write/maintain parallel programs 

 Generate-test-aggregate programming [Emoto et al. ESOP ’12] 

 Naïve program = composition of generator, tester and aggregator 

 Theory to derive efficient implementation from a naïve program 

 Prototype Scala library with automatic derivation [Liu et al. PMAM’13] 

 Question: Is such a library correctly implemented? 

 This study: Verified generate-test-aggregate library on Coq 
 



OCaml and BSML 

Building Blocks 

Generate-Test-Aggregate Coq Library 
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Running Example: 0-1 Knapsack Problem 

 Given a knapsack and a set of items, find the most 
valuable selection of items adhering to the knapsack’s 
weight restriction 

 

 

 

 

 

 

 

 The best total value is $120 by choosing          ,       and   
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User’s Point of View 



Writing Your Naïve Code in GTA Form 

 GTA Form   
 

 Generate all candidate substructures of the input 

 Test and discard unnecessary candidates 

 Aggregate the valid candidates to make the final result 
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 Definition naive_prog := aggregate :o: test :o: generate. 

User’s Point of View 



Writing Your Naïve Code in GTA Form 

 GTA Form   
 

 allSelects generates all item selections 

 validWeight filters out selections with total weight heavier than w 

 maxValue takes the maximum total value (for simplicity, value only) 

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 
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Given a knapsack and a set of items, find the most valuable selection of 
items adhering to the knapsack’s weight restriction 

User’s Point of View 



---Writing Your Naïve Code--- 

Generator: Generating All Candidates 

Definition allSelections  := subs . 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

 generate : [A] -> { [A] } 

 { X } is the type of bags (multi-sets) of X 

 You may design your generators, but it is not easy 

 The library provides a set of ready-made generators 

 subs  for all sublists  

 segs/inits/tails  for all contiguous sublists/prefixes/suffixes 

 ... 

 For the knapsack problem, we choose the subs generator: 

Definition allSelections  := subs . 

User’s Point of View 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

---Writing Your Naïve Code---  

Tester: Discarding Invalid Candidates 

 test : { [A] } -> { [A] } 

 A filter operation of a bag with predicate p of a specific kind: 
 Definition p := ok :o: fold_right () i


 :o: map f  

 ok : a lightweight judgment  

  : a monoid operator with the identity element i


 

 (Monoid: an associative binary operator with its identity element) 

 For the knapsack problem, p checks the total weight: 
 

 Definition totalWeight := fold_right (+) 0 :o: map getWeight . 
Definition p w := (fun a => a <= w) :o: totalWeight . 
Definition validWeight w := filter (p w). 

User’s Point of View 
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 Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 

---Writing Your Naïve Code---  

Aggregator: Making the Final Result 

 aggregate :: { [A] } -> S 

 S is a type of the final result 

 You may design your aggregators, but it is not easy 

 The library provides a set of ready-made aggregators 

 maxsum f   for finding the maximum f-weighted sum 

 sumprod f, count, maxsumSolution f, longest, top-k variants, … 

 For the knapsack problem, we can use the maxsum aggregator:  
 

 

 

 

 

 

 

 

Definition maxValue := maxsum getValue . 

User’s Point of View 



 

All You Need to Do 
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Definition allSelections  := subs . 
Definition totalWeight := fold_right (+) 0 :o: map getWeight . 
Definition p w := (fun a => a <= w) :o: totalWeight . 
Definition validWeight w := filter (p w). 
Definition maxValue := maxsum getValue . 
Definition knapsack w := maxValue :o: validWeight w :o: allSelections. 
 

(* check the naïve program *) 

Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2 ]). 
 

(* small proofs related to the naïve program *) 

Program Instance totalWeight_monoidOp :  
  isUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid. 
Program Instance proper_getWeight : Proper (eq_item ==> eq) getWeight. 
Next Obligation. (* omit *) Defined. 

Definition knapsack_opt w := fused (tgt := knapsack w ). (* auto derivation*) 

User’s Point of View 



Experiment Results on Extracted Code 

 knapsack_opt (auto optimized, parallelized knapsack)  
has been extracted to OCaml + BSML (BSP primitives) 

 Cost is linear in #items,  
although the naïve program looks an exponential cost program 

 Good speedup (except for the fully busy case) 

 64GB shared memory, 48 cores = 12 cores x 4 processors  
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Internal of the Library 
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Derived Implementation of knapsack 

 E.g., knapsack_opt 2kg [ (1kg, $10), (1kg, $20), (2kg, $20) ]  
  

= postproc (                ⊗                ⊗         ) 

 

 

= postproc (                 ⊗         ) = postproc (                  ) 

 
      = $30 

Parallel time complexity: O(wn/p + w2 log p)  (n = #items, p = #cores) 

 Auto-derivation mechanism derives this  
by using two verified transformation theorems 
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0kg $0 

1kg $10 

0kg $0 

1kg $20 

0kg $0 

2kg $20 

0kg $0 

1kg $20 

2kg $30 

0kg $0 

2kg $20 

d 

0kg $0 

1kg $20 

2kg $30 

3kg+ $50 

Internal of the Library 



Automatic Fusion 

 Fusion: eliminating intermediate data structures between two funcs: 

 E.g., map f (map g x) = map (f :o: g) x 

 Basic idea: Use the typeclass resolver for an automatic search 

 Auto-parallelization has been implemented by the same tech. [Tesson  11] 

 Two typeclasses: Fusion for a rule DB and Fuser for a trigger 

 Class Fusion `(producer : B -> C) `(consumer : C -> D) (_fused : B -> D) := { 
    _spec : forall b, consumer (producer b) === _fused b }. 

Class Fuser `(tgt : B -> D) := {  
  fused : B -> D;     spec : forall b, tgt b === fused b }. 
 

Global Program Instance fuser `{fusion : Fusion producer consumer _fused}  
: Fuser (consumer :o: producer) := { fused := _fused; spec := _spec }. 
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Internal of the Library 



Automatic Fusion Mechanism 

 Definition opt := fused (tgt := f :o: h). 

 1st, looking for an instance of Fuser (f :o: h)   

Fusion h f fh_fused 
(* f :o: h === fh_fused *) 

Fusion f’ f  ff_fused 
(* f :o: f’ === ff_fused *)  

Fusion p c _fused => Fuser (c :o: p) 

2nd, looking for an instance of Fusion h f _   

3rd, replaced with 
fh_fused 

Instance pool 
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Fusion g h hg_fused 
(* h :o: g === hg_fused *)  

Fusion g f  fg_fused 
(* f :o: g === fg_fused *)  

Fusion f h hf_fused 
(* h :o: f === hf_fused *)  

Internal of the Library 



Verified Fusion Theorems 

 Filter-embedding Fusion 

 New aggregator does computation on tables 

 

 

 

 

 Semiring Fusion  

 A kind of shortcut fusion (substitution of consumer’s operators ) 

 

   

T A A pp 
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Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Internal of the Library 

Efficient G A 

Theorem semiringFusion 
`(c1 : isNestedFoldsWithSemiring         aggregate   f oplus otimes ep et) 
`(c2 : isSemiringPolymorphicGenerator generate     polygen) 
: forall x, (aggregate :o: generate) x === (polygen f (oplus, otimes, ep, et)) x. 



Other Applications Include… 

 More restriction on selections in the Knapsack Problem 

 E.g., “Item B must be contained if item C is contained”, 

 “The number of items with value > $100 is at most 5”, 

 “Select an even number of items”, etc. 

 Your GTA program can have multiple testers 

 Finding the most likely sequence of hidden events from  
a sequence of observed events (Viterbi and its variants) 

 Finding the longest (most valuable) segment (region) 
satisfying a set of conditions 

 etc 
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Conclusion 

 A Verified Generate-Test-Aggregate Coq Library 
 Equipped with an automatic fusion mechanism 

 Proofs of two fusion theorems  

 You can write an easy-to-design/verify/modify naïve program, 
but get an efficient parallel program 

 Extracted code runs on BSML/OCaml on parallel machines 

 Axiomatization/Implementation of Bags, typeclass-based Maps, 
Monoid semiring (algebra of tables), … 

 Subjects in future studies 
 Extension of the theory to trees and graphs 

 Use of efficient implementation of ‘tables’ 

 Code extraction for execution on Hadoop/MapReduce 
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Thank you for listening. 
 

Visit the following URL for the library code: 
 

   http://traclifo.univ-orleans.fr/SyDPaCC  
 

  

 

   

 Systematic Development of Programs for 
Parallel and Cloud Computing 

http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
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Host Language and Parallel Library 

Building Blocks 

User Program Building Blocks 

SyDPaCC: Systematic Development of 

Programs for Parallel and Cloud Computing 
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compilation 
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Theory 
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Finitization and Automatic Finitization 
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 Making the range R of the homomorphism in a filter is 
important to the performance of the derived program 

 The cost of the multiplication operator on tables: O(|R|2) 

 We can use { x : nat | x <= w + 1 } as R, instead of nat,  
for Definition p := comparison_with w :o: sum_of_nats  

 The comparison may be (<= w), (==w), (>=w), (==) 

 (** automatic finitization of the predicate *) 
  Definition weightLimit' (w : nat) := rewrite_p (p := weightLimit w). 
  Definition validWeight' (w : nat) := filterB (weightLimit' w) dec_spec. 
  Definition knapsack' (w : nat) := maxvalue :o: validWeight' w :o: subs. 
 

  (** The linear cost program. *) 
  Definition knapsack'_opt (w : nat) := Eval simpl in fused (f := knapsack' w). 



1st Fusion Theorem: 

Filter-embedding Fusion 
 

 

 

   

 The first condition says 
an aggregator is a nested folds with semiring operators: 
     Definition nestedFolds f (⊕, ⊗, i⊕, i⊗)  
                   := foldbag (⊕) i⊕ :o: mapbag (fold_right (⊗) i⊗ :o: map f).  

 Semiring: monoid op. ⊗ distributes over commutative monoid op. ⊕, 
              and i⊕ is the absorbing element of ⊗ . 

 New aggregator does computation on tables 

 The structure of tables is derived from the tester & aggregator 

T A A pp 
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Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Internal of the Library 



1st Fusion Theorem: 

Filter-embedding Fusion 
 

 

 

   

 New aggregator does computation on tables 

 For the knapsack problem with w = 2kg,  

 mkTable (“1kg, $10”)  = 

 

 

 postproc (   )                ) = $30 
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Theorem filterEmbeddingFusion 
`(c1 : isNestedFoldsWithSemiring  aggregate  f oplus otimes ep et) 
`(c2 : isFilterWithFoldWithMonoid  test  h odot e ok dec) 
: forall x, 
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x. 

Total weight  Max. total value 

1kg $10 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

3kg+ $50 

Definition totalWeight  
  := foldr (+) 0 :o: map getWeight. 
Definition p w  
  := (fun a => a<=w) :o: totalWeight . 

T A A pp 

Internal of the Library 



1st Fusion Theorem: 

Filter-embedding Fusion 

 Two table merge operations ⊕ and ⊗ (w = 2kg) 
 

  ⊕     = 

 

 

 

  ⊗      = 

 

 
  
   

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary.  

This finitization of tables can be done automatically in a similar way to the fusion 
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T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $10 

T.W. M. T. V. 

0kg $0 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $10 

T.W. M. T. V. 

0kg $0 

2kg $20 

T.W. M. T. V. 

0kg $0 

1kg $30 

2kg $20 

3kg+ $50 

(row-wise 
 maximum) 

(all possible 
 combination) 

T A A pp 

Internal of the Library 



2nd Fusion Theorem:  

Semiring Fusion 

 
 
 
 

 The second condition (instance) says  
 generate = polygen + “constructors of bags of lists”, and 
 polygen accepts any semiring operators (i.e., polymorphic)  

 Constructors of basg of lists:  
 Cross-concatenation: {x, y} ×++ {z, w} = { x++z, x++w, y++z, y++w} 
 Union: {x, y} ∪ {z, w} = {x, y, z, w} 

 Definition poly_subs f (op, ot, ep, et)  
    := fold_right ot et :o: map (fun x => op (f x)  et) 

 Definition subs := poly_subs (fun x => { [x] }) (×++ ) (∪)  { [ ] }  { } 
 E.g., subs [1, 2] = ( { [1] } ∪ { [ ] } ) ×++ ( { [1] } ∪ { [ ] } ) 

                      = { [1], [ ] } ×++ { [2], [ ] } = { [1,2], [1], [2], [ ] } 

Efficient G A 
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Theorem semiringFusion 
`(c1 : isNestedFoldsWithSemiring         aggregate   f oplus otimes ep et) 
`(c2 : isSemiringPolymorphicGenerator generate     polygen) 
: forall x, (aggregate :o: generate) x === (polygen f oplus otimes ep et) x. 



Property of Polymorphic Functions 
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Class isSemiringPolymorphicFunction 
  (pgen : forall {V:Type}, (T -> V) -> (V->V->V) -> (V->V->V) -> (V) -> (V) -> V)  
  :={semiringPolymorphism :  
     forall {V:Type} (f : T -> V) (oplus : V->V->V) (otimes : V->V->V)  (ep et : V), 
      FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS_ET)  
        = pgen f oplus otimes ep et 
}. 

 All instances of a polymorphic function act in the same way. 

 Evaluation of a computation tree constructed by a polymoprhic 
function produces the same result as computing the result 
directly by the polymorphic function  



FreeSemiring and its Homomorphism 
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Inductive FreeSemiring := 
      | FS_F : T -> FreeSemiring 
      | FS_OPLUS : FreeSemiring -> FreeSemiring -> FreeSemiring 
      | FS_OTIMES : FreeSemiring -> FreeSemiring -> FreeSemiring 
      | FS_EP : FreeSemiring 
      | FS_ET : FreeSemiring. 
 
Fixpoint FSHom {V:Type} (f : T -> V) (oplus otimes : V->V->V)  (ep et : V) (x)  
:= match x with 
   | FS_F a => f a 
   | FS_OPLUS l r =>  
              oplus (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r) 
   | FS_OTIMES l r =>  
             otimes (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r) 
   | FS_EP => ep 
   | FS_ET => et 
  end. 



Semiring (⊕,⊗,o,i) 
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 Associativity:  x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z 
   x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z 

 Commutativity:  x ⊕ y = y ⊕ x 

 Distributivity:  x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) 

 Identities:   x ⊕ o = o ⊕ x = x  
   x ⊗ i = i ⊗ x = x 

 Absorbing:   x ⊗ o = o ⊗ x = o 

 
 Semiring (⊕,⊗,o,i)  
= Monoid (⊗,i) + Commuataive Monoid (⊕,o)  
   + Distributivity + Absorbing 
    

 

 

 

 



Monoid Semiring 
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 Given a semiring (⊕,⊗,o,i) on S and monoid (⊙,e) on M, 

we can make a new semiring on linear combinations (tables). 

 Linear combination:  s1 m1 + … + sk mk      (table view:             )  
 

 Addition: s1 m + s2 m = (s1 ⊕ s2) m 

  (otherwise no effect) 
 

 Multiplication: 
 (s1 m1 + … + sk mk) × (t1 n1 + … + tj nj) 
      = (s1 ⊗ t1) (m1 ⊙ n1) + … + (sk ⊕ t1) (mk ⊙ n1)  

         + …  
            + (s1 ⊗ tj) (m1 ⊙ nj) + … + (sk ⊕ tj) (mk ⊙ nj)  

 

m1 s1 

… … 

mk sk 



All Assignments Generator 
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 assign [T,F] [a, b, c]  
= { [(a, T), (b, T), (c, T)], 
 [(a, T), (b, T), (c, F)], 
 [(a, T), (b, F), (c, T)], 
 [(a, T), (b, F), (c, F)], 
 [(a, F), (b, T), (c, T)], 
 [(a, F), (b, T), (c, F)], 
 [(a, F), (b, F), (c, T)], 
 [(a, F), (b, F), (c, F)]  } 
 

 

 

 

 

 


