
A Verified Generate-Test-Aggregate Coq Library

for Parallel Programs Extraction

Kento EMOTO
Kyushu Institute of Technology, Japan

Joint work with Frédéric Loulergue and Julien Tesson
Université d'Orléans and Université Paris-Est, France

Background & Motivation

2

 Parallel programming is necessary, but not easy
 Parallelism is the only way to gain performance

 Writing/maintaining code with low-level parallelism is difficult

 High-level parallel programming has been proposed
 (e.g., skeletal parallel programming [Cole 89])
 Writing code by composing building blocks hiding low-level parallelism

 Easy to write/maintain parallel programs

 Generate-test-aggregate programming [Emoto et al. ESOP ’12]

 Naïve program = composition of generator, tester and aggregator

 Theory to derive efficient implementation from a naïve program

 Prototype Scala library with automatic derivation [Liu et al. PMAM’13]

 Question: Is such a library correctly implemented?

 This study: Verified generate-test-aggregate library on Coq

OCaml and BSML

Building Blocks

Generate-Test-Aggregate Coq Library

3

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

GTA Fusion Theorems

T A A
Efficient G A

Auto Fusion
Mechanism

extraction

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

User Program Building Blocks

spec =
Specifications/Axiomatizations

G A T

G G G A A A

OCaml and BSML

Building Blocks

Generate-Test-Aggregate Coq Library

4

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

GTA Fusion Theorems

T A A
Efficient G A

Auto Fusion
Mechanism

extraction

Provides a set of primitive
operations of the BSP (Bulk
Synchronous Parallel) model

User’s point of view

User Program Building Blocks

spec =
Specifications/Axiomatizations

G A T

G G G A A A

Running Example: 0-1 Knapsack Problem

 Given a knapsack and a set of items, find the most
valuable selection of items adhering to the knapsack’s
weight restriction

 The best total value is $120 by choosing , and

5

User’s Point of View

Writing Your Naïve Code in GTA Form

 GTA Form

 Generate all candidate substructures of the input

 Test and discard unnecessary candidates

 Aggregate the valid candidates to make the final result

6

 Definition naive_prog := aggregate :o: test :o: generate.

User’s Point of View

Writing Your Naïve Code in GTA Form

 GTA Form

 allSelects generates all item selections

 validWeight filters out selections with total weight heavier than w

 maxValue takes the maximum total value (for simplicity, value only)

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

7

Given a knapsack and a set of items, find the most valuable selection of
items adhering to the knapsack’s weight restriction

User’s Point of View

---Writing Your Naïve Code---

Generator: Generating All Candidates

Definition allSelections := subs .

8

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

 generate : [A] -> { [A] }

 { X } is the type of bags (multi-sets) of X

 You may design your generators, but it is not easy

 The library provides a set of ready-made generators

 subs for all sublists

 segs/inits/tails for all contiguous sublists/prefixes/suffixes

 ...

 For the knapsack problem, we choose the subs generator:

Definition allSelections := subs .

User’s Point of View

9

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

---Writing Your Naïve Code---

Tester: Discarding Invalid Candidates

 test : { [A] } -> { [A] }

 A filter operation of a bag with predicate p of a specific kind:
 Definition p := ok :o: fold_right () i


 :o: map f

 ok : a lightweight judgment

  : a monoid operator with the identity element i


 (Monoid: an associative binary operator with its identity element)

 For the knapsack problem, p checks the total weight:

 Definition totalWeight := fold_right (+) 0 :o: map getWeight .
Definition p w := (fun a => a <= w) :o: totalWeight .
Definition validWeight w := filter (p w).

User’s Point of View

10

 Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

---Writing Your Naïve Code---

Aggregator: Making the Final Result

 aggregate :: { [A] } -> S

 S is a type of the final result

 You may design your aggregators, but it is not easy

 The library provides a set of ready-made aggregators

 maxsum f for finding the maximum f-weighted sum

 sumprod f, count, maxsumSolution f, longest, top-k variants, …

 For the knapsack problem, we can use the maxsum aggregator:

Definition maxValue := maxsum getValue .

User’s Point of View

All You Need to Do

11

Definition allSelections := subs .
Definition totalWeight := fold_right (+) 0 :o: map getWeight .
Definition p w := (fun a => a <= w) :o: totalWeight .
Definition validWeight w := filter (p w).
Definition maxValue := maxsum getValue .
Definition knapsack w := maxValue :o: validWeight w :o: allSelections.

(* check the naïve program *)

Eval compute in (knapsack 3 [item 2 1; item 2 2; item 3 2]).

(* small proofs related to the naïve program *)

Program Instance totalWeight_monoidOp :
 isUsingMonoidOp totalWeight getWeight plus 0 := fold_right_monoid.
Program Instance proper_getWeight : Proper (eq_item ==> eq) getWeight.
Next Obligation. (* omit *) Defined.

Definition knapsack_opt w := fused (tgt := knapsack w). (* auto derivation*)

User’s Point of View

Experiment Results on Extracted Code

 knapsack_opt (auto optimized, parallelized knapsack)
has been extracted to OCaml + BSML (BSP primitives)

 Cost is linear in #items,
although the naïve program looks an exponential cost program

 Good speedup (except for the fully busy case)

 64GB shared memory, 48 cores = 12 cores x 4 processors

12

0
5

10
15
20
25
30
35

0 500000 1000000

Execution Time (s)

0

5

10

15

20

25

0 20 40

Speedup

#items #cores

User’s Point of View

OCaml and BSML

Building Blocks

User Program Building Blocks

Generate-Test-Aggregate Coq Library

13

spec =

Implementation

derivation

Specifications/Axiomatizations

Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

G A T

GTA Fusion Theorems

T A A
Efficient G A

G G G A A A
Auto Fusion
Mechanism

extraction
Provides a set of primitive

operations of the BSP (Bulk
Synchronous Parallel) model

linear speedup

linear cost

Definition knapsack w
:= maxValue :o: validWeight w :o: allSelections.

OCaml and BSML

Building Blocks

User Program Building Blocks

Generate-Test-Aggregate Coq Library

14

spec =

Implementation

derivation
Impl.

Axiomatization/Specification
of Parallel Library: BSML

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

G A T

extraction
Provides a set of primitive

operations of the BSP (Bulk
Synchronous Parallel) model

linear speedup

linear cost

Definition knapsack w
:= maxValue :o: validWeight w :o: allSelections.

Internal of the Library

Specifications/Axiomatizations

GTA Fusion Theorems

T A A
Efficient G A

G G G A A A
Auto Fusion
Mechanism

Derived Implementation of knapsack

 E.g., knapsack_opt 2kg [(1kg, $10), (1kg, $20), (2kg, $20)]

= postproc (⊗ ⊗)

= postproc (⊗) = postproc ()

 = $30

Parallel time complexity: O(wn/p + w2 log p) (n = #items, p = #cores)

 Auto-derivation mechanism derives this
by using two verified transformation theorems

15

0kg $0

1kg $10

0kg $0

1kg $20

0kg $0

2kg $20

0kg $0

1kg $20

2kg $30

0kg $0

2kg $20

d

0kg $0

1kg $20

2kg $30

3kg+ $50

Internal of the Library

Automatic Fusion

 Fusion: eliminating intermediate data structures between two funcs:

 E.g., map f (map g x) = map (f :o: g) x

 Basic idea: Use the typeclass resolver for an automatic search

 Auto-parallelization has been implemented by the same tech. [Tesson 11]

 Two typeclasses: Fusion for a rule DB and Fuser for a trigger

 Class Fusion `(producer : B -> C) `(consumer : C -> D) (_fused : B -> D) := {
 _spec : forall b, consumer (producer b) === _fused b }.

Class Fuser `(tgt : B -> D) := {
 fused : B -> D; spec : forall b, tgt b === fused b }.

Global Program Instance fuser `{fusion : Fusion producer consumer _fused}
: Fuser (consumer :o: producer) := { fused := _fused; spec := _spec }.

16

Internal of the Library

Automatic Fusion Mechanism

 Definition opt := fused (tgt := f :o: h).

 1st, looking for an instance of Fuser (f :o: h)

Fusion h f fh_fused
(* f :o: h === fh_fused *)

Fusion f’ f ff_fused
(* f :o: f’ === ff_fused *)

Fusion p c _fused => Fuser (c :o: p)

2nd, looking for an instance of Fusion h f _

3rd, replaced with
fh_fused

Instance pool

17

Fusion g h hg_fused
(* h :o: g === hg_fused *)

Fusion g f fg_fused
(* f :o: g === fg_fused *)

Fusion f h hf_fused
(* h :o: f === hf_fused *)

Internal of the Library

Verified Fusion Theorems

 Filter-embedding Fusion

 New aggregator does computation on tables

 Semiring Fusion

 A kind of shortcut fusion (substitution of consumer’s operators)

T A A pp

18

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Internal of the Library

Efficient G A

Theorem semiringFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isSemiringPolymorphicGenerator generate polygen)
: forall x, (aggregate :o: generate) x === (polygen f (oplus, otimes, ep, et)) x.

Other Applications Include…

 More restriction on selections in the Knapsack Problem

 E.g., “Item B must be contained if item C is contained”,

 “The number of items with value > $100 is at most 5”,

 “Select an even number of items”, etc.

 Your GTA program can have multiple testers

 Finding the most likely sequence of hidden events from
a sequence of observed events (Viterbi and its variants)

 Finding the longest (most valuable) segment (region)
satisfying a set of conditions

 etc

19

Conclusion

 A Verified Generate-Test-Aggregate Coq Library
 Equipped with an automatic fusion mechanism

 Proofs of two fusion theorems

 You can write an easy-to-design/verify/modify naïve program,
but get an efficient parallel program

 Extracted code runs on BSML/OCaml on parallel machines

 Axiomatization/Implementation of Bags, typeclass-based Maps,
Monoid semiring (algebra of tables), …

 Subjects in future studies
 Extension of the theory to trees and graphs

 Use of efficient implementation of ‘tables’

 Code extraction for execution on Hadoop/MapReduce

20

21

Thank you for listening.

Visit the following URL for the library code:

 http://traclifo.univ-orleans.fr/SyDPaCC

 Systematic Development of Programs for
Parallel and Cloud Computing

http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC
http://traclifo.univ-orleans.fr/SyDPaCC

22

23

Host Language and Parallel Library

Building Blocks

User Program Building Blocks

SyDPaCC: Systematic Development of

Programs for Parallel and Cloud Computing

24

Specification

Implementation

derivation

Specifications/Axiomatizations

Impl.

Axiomatization/Specification
of Parallel Library

Implementation

Native Code Language/Library Runtime, OS, …

compilation

Coq verified

Theory

extraction

Finitization and Automatic Finitization

25

 Making the range R of the homomorphism in a filter is
important to the performance of the derived program

 The cost of the multiplication operator on tables: O(|R|2)

 We can use { x : nat | x <= w + 1 } as R, instead of nat,
for Definition p := comparison_with w :o: sum_of_nats

 The comparison may be (<= w), (==w), (>=w), (==)

 (** automatic finitization of the predicate *)
 Definition weightLimit' (w : nat) := rewrite_p (p := weightLimit w).
 Definition validWeight' (w : nat) := filterB (weightLimit' w) dec_spec.
 Definition knapsack' (w : nat) := maxvalue :o: validWeight' w :o: subs.

 (** The linear cost program. *)
 Definition knapsack'_opt (w : nat) := Eval simpl in fused (f := knapsack' w).

1st Fusion Theorem:

Filter-embedding Fusion

 The first condition says
an aggregator is a nested folds with semiring operators:
 Definition nestedFolds f (⊕, ⊗, i⊕, i⊗)
 := foldbag (⊕) i⊕ :o: mapbag (fold_right (⊗) i⊗ :o: map f).

 Semiring: monoid op. ⊗ distributes over commutative monoid op. ⊕,
 and i⊕ is the absorbing element of ⊗ .

 New aggregator does computation on tables

 The structure of tables is derived from the tester & aggregator

T A A pp

26

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Internal of the Library

1st Fusion Theorem:

Filter-embedding Fusion

 New aggregator does computation on tables

 For the knapsack problem with w = 2kg,

 mkTable (“1kg, $10”) =

 postproc ()) = $30

27

Theorem filterEmbeddingFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isFilterWithFoldWithMonoid test h odot e ok dec)
: forall x,
 (aggregate :o: test) x === (postproc :o: nestedFolds mkTable semiringOnTables) x.

Total weight Max. total value

1kg $10

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

3kg+ $50

Definition totalWeight
 := foldr (+) 0 :o: map getWeight.
Definition p w
 := (fun a => a<=w) :o: totalWeight .

T A A pp

Internal of the Library

1st Fusion Theorem:

Filter-embedding Fusion

 Two table merge operations ⊕ and ⊗ (w = 2kg)

 ⊕ =

 ⊗ =

Note: since the weight limit w = 2kg, entries greater than 3kg are unnecessary.

This finitization of tables can be done automatically in a similar way to the fusion

28

T.W. M. T. V.

0kg $0

1kg $30

2kg $10

T.W. M. T. V.

0kg $0

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $10

T.W. M. T. V.

0kg $0

2kg $20

T.W. M. T. V.

0kg $0

1kg $30

2kg $20

3kg+ $50

(row-wise
 maximum)

(all possible
 combination)

T A A pp

Internal of the Library

2nd Fusion Theorem:

Semiring Fusion

 The second condition (instance) says
 generate = polygen + “constructors of bags of lists”, and
 polygen accepts any semiring operators (i.e., polymorphic)

 Constructors of basg of lists:
 Cross-concatenation: {x, y} ×++ {z, w} = { x++z, x++w, y++z, y++w}
 Union: {x, y} ∪ {z, w} = {x, y, z, w}

 Definition poly_subs f (op, ot, ep, et)
 := fold_right ot et :o: map (fun x => op (f x) et)

 Definition subs := poly_subs (fun x => { [x] }) (×++) (∪) { [] } { }
 E.g., subs [1, 2] = ({ [1] } ∪ { [] }) ×++ ({ [1] } ∪ { [] })

 = { [1], [] } ×++ { [2], [] } = { [1,2], [1], [2], [] }

Efficient G A

29

Theorem semiringFusion
`(c1 : isNestedFoldsWithSemiring aggregate f oplus otimes ep et)
`(c2 : isSemiringPolymorphicGenerator generate polygen)
: forall x, (aggregate :o: generate) x === (polygen f oplus otimes ep et) x.

Property of Polymorphic Functions

30

Class isSemiringPolymorphicFunction
 (pgen : forall {V:Type}, (T -> V) -> (V->V->V) -> (V->V->V) -> (V) -> (V) -> V)
 :={semiringPolymorphism :
 forall {V:Type} (f : T -> V) (oplus : V->V->V) (otimes : V->V->V) (ep et : V),
 FSHom f oplus otimes ep et (pgen FS_F FS_OPLUS FS_OTIMES FS_EP FS_ET)
 = pgen f oplus otimes ep et
}.

 All instances of a polymorphic function act in the same way.

 Evaluation of a computation tree constructed by a polymoprhic
function produces the same result as computing the result
directly by the polymorphic function

FreeSemiring and its Homomorphism

31

Inductive FreeSemiring :=
 | FS_F : T -> FreeSemiring
 | FS_OPLUS : FreeSemiring -> FreeSemiring -> FreeSemiring
 | FS_OTIMES : FreeSemiring -> FreeSemiring -> FreeSemiring
 | FS_EP : FreeSemiring
 | FS_ET : FreeSemiring.

Fixpoint FSHom {V:Type} (f : T -> V) (oplus otimes : V->V->V) (ep et : V) (x)
:= match x with
 | FS_F a => f a
 | FS_OPLUS l r =>
 oplus (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r)
 | FS_OTIMES l r =>
 otimes (FSHom f oplus otimes ep et l) (FSHom f oplus otimes ep et r)
 | FS_EP => ep
 | FS_ET => et
 end.

Semiring (⊕,⊗,o,i)

32

 Associativity: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
 x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z

 Commutativity: x ⊕ y = y ⊕ x

 Distributivity: x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

 Identities: x ⊕ o = o ⊕ x = x
 x ⊗ i = i ⊗ x = x

 Absorbing: x ⊗ o = o ⊗ x = o

 Semiring (⊕,⊗,o,i)
= Monoid (⊗,i) + Commuataive Monoid (⊕,o)
 + Distributivity + Absorbing

Monoid Semiring

33

 Given a semiring (⊕,⊗,o,i) on S and monoid (⊙,e) on M,

we can make a new semiring on linear combinations (tables).

 Linear combination: s1 m1 + … + sk mk (table view:)

 Addition: s1 m + s2 m = (s1 ⊕ s2) m

 (otherwise no effect)

 Multiplication:
 (s1 m1 + … + sk mk) × (t1 n1 + … + tj nj)
 = (s1 ⊗ t1) (m1 ⊙ n1) + … + (sk ⊕ t1) (mk ⊙ n1)

 + …
 + (s1 ⊗ tj) (m1 ⊙ nj) + … + (sk ⊕ tj) (mk ⊙ nj)

m1 s1

… …

mk sk

All Assignments Generator

34

 assign [T,F] [a, b, c]
= { [(a, T), (b, T), (c, T)],
 [(a, T), (b, T), (c, F)],
 [(a, T), (b, F), (c, T)],
 [(a, T), (b, F), (c, F)],
 [(a, F), (b, T), (c, T)],
 [(a, F), (b, T), (c, F)],
 [(a, F), (b, F), (c, T)],
 [(a, F), (b, F), (c, F)] }

