Asynchronous User Interaction and
Tool Integration in Isabelle/PIDE

Makarius Wenzel
Univ. Paris-Sud, LRI

July 2014

Project Paral-ITP
ANR-11-INSE-001

Introduction

Motivation

General aims:
e renovate and reform interactive (and automated) theorem proving
for new generations of users

e address paradigm shifts: multicore and pervasive parallelism
e document-oriented user interaction and tool integration

Introduction

Motivation

General aims:
e renovate and reform interactive (and automated) theorem proving
for new generations of users

e address paradigm shifts: multicore and pervasive parallelism
e document-oriented user interaction and tool integration

Ultimate challenge:

Introducing genuine interaction into | TP

e many conceptual problems
e many technical problems
e many social problems

Introduction

TTY loop (= 1979)

-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Isabelle/HOL (Isabelle2013: February 2013)
> theory A imports Main begin

theory A

> lemma "x = x";

proof (prove): step ©

a

goal (1 subgoal):
1. x = x
> 1l
Q-+ Terminal
File Edit View Terminal Tabs Help
Welcome to Coq 8.4pl2 (September 2013)

Coq < Lemma test: forall (A: Type) (x: A), X = x .
1 subgoal

forall (A : Type) (x : A), X = X — | ‘ &
test < i (Wikipedia: K. Thompson and D. Ritchie at PDP-11)

e user drives prover, via manual copy-paste
e inherently synchronous and sequential

Introduction

Proof General and clones (=~ 1999)

File Edit Apps Options Buffers Tools Proof-General X-Symbol

File Edit Navigation IryTactics Templates Queries Display Compile Windows

=R el PR

EX30ETLO .

finally; show Pthesis; .;
ged;

text f*

With \namef{group-right-inverss} already availsble,

\name {group-right-unit}\label {thm:group-right-unit} is now
§5tablished much easier.

id g

theorem group_right_unit: "x o one = (x:
proof
have " e one = % e (inv x e)"
by (simp only: group_left_inverse);
also; have "... = x ® inv x ® x";
by (simp only: group_assoc);
also; have "... = one s x";
by (simp only: group_right_inverse);
also; have "... = x";
by (simp only: group_left_unit];
finally; show 7thesis; .;
ged;

text £x
\medskip The calculational proof style above follows typical

presentations given in any introductory course on algebra. The basic

technigue is to form a transitive chain of eguations, which in turn

are established hy simplifying with appropriate rules. The low-level

Trziral details af amiatinnal reasaning are Teft imnlicit

fffff XEmacs: Group.thy (Isabelle/Isar script XS:isar Font! Scriptin,

Froof (prove): step §, depth 1
goal (have):

¥ e iny x e X = One * X
1. x e iny ®x & x = one * x

————— XEmacs: #isabelle-goalsk (Isabelle/Isar proofstate)————All

Eintrow | @esamples.y |

rewrite IHn.
reflexivity.
Qed.

Lemma nat_eq_dec : forall (n m : nat), {n
induction n.
destruct m as [|m].
left.
reflexivity.
right.
discriminate.
destruct m as [|m].
right; discriminate.
destruct (IHn m) as [Hm|[Hm].
left.
rewrite Hm.|
reflexivity.
right.
intros Hnm.
apply Hm.
injection Hnm.
tauto.
Defined.

Eval compute in (nat_eq_dec 2 2).
Eval compute in (nat_eq dec 2 1).

Definition pred (n:nat) : option nat :=
match n with
| @ => None

Ll |

n

2 subgoals
& [Hn

Hm

nat, {n = m} + {n <> m}

(1/2)

Sm

(2/2)

{S n

Sm} + {Sn<>5Sm}

|Ready in Predicate_Logic, proving nat_eq_dec

Line: 159 Char: 13 Cogide started

e user drives prover, via automated copy-paste and undo

e inherently synchronous and sequential

Introduction

PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Introduction 5

PIDE: Prover IDE (~ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports
Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

PIDE applications:
Isabelle/jEdit the default user-interface of Isabelle

Isabelle/Eclipse by Andrius Velykis (for Isabelle2013)
https://github.com/andriusvelykis/isabelle-eclipse

Isabelle/Clide by Martin Ring and Christoph Liith (subsequent talk)
https://github.com/martinring/clide

Introduction 5

https://github.com/andriusvelykis/isabelle-eclipse
https://github.com/martinring/clide

Introduction

Isabelle/jEdit Prover IDE (2014)

800 = Seq.thy "
@@ S99 ¢ XD TEEM:
| 1 Seq.thy ($ISABELLE_HOME/src/HOL/ex/) s
* 11 * B
» |header {* Finite sequences *} G | ng\}
-
Seq.thy
* |theory Seq v Seq ?
. . N .
1mpor‘ts Main v header {* Finite sequences *} 5
. theory Seq &
begln datatype 'a seq = Empty | Sec &
. g
f - ' o0 0 fun reverse :: a seq = a
= datatype a seq = Empty I Seq 'a a seq » lemma conc_empty: "conc xs En E
L » lemma conc_assoc: "conc (cnm|§,
o 0 0 0 o b lemma reverse_conc: "reverse | &
= |fun conc a seq = 'a seq = 'a seq X
» lemma reverse_reverse: rever -
where end g
"conc Empty ys = ys" g
| "conc (Beq x xs) ys = Seq x (conc xs ys)"
5 <3|
~ |fun reversd constant "Seq.seq.Seq"
whe re a = 'a seq = 'a seq
"reverse Empty = Empty"
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
~ |Lemma conc_empty: "conc xs Empty = xs"
by (induct xs) simp_all
™ Auto update | Update | Search: ¥ 100% =)
constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(Ap. size (fst p)) <*mlex*> {}"
B ~ Console | Output | Query Sledgehammer
[13,39 (203/791) (isabelle,sidekick UTF-8-lsabelle) ug 353MB 11:05 |

Automatically tried tools (2014)

Scratch.thy (modified)

T@dE & 9¢ XPDE R - OEE B & © |«

| ® Seratch.thy (~/)

datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"

fun tree_of_list :: "'a list = 'a tree" where
"tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

fun list_of_tree :: "'a tree = 'a list" where
"list_of_tree Tip = []1"
| "list_of_tree (Tree x tl1 t2) = x # list_of_tree tl1 @ list_of_tree t2"

lemma "list_of_tree (tree_of_list xs) = xs"
by (induct xs) simp_all

@|Lemma "tree of list (list of tree t) = t"l
5 ¥

v Auto Quickcheck found a counterexample:

t =Tree a; (Tree a; Tip Tip) Tip

Evaluated terms:
tree of list (list of tree t) =
Tree a; Tip (Tree a; Tip Tip)

18,42 (476 (isabelle,sidekick,UTF-8-lsabelle) UGHEERE 04MB 11:52

Introduction

PIDE architecture

The connectivity problem

Scala ML
TCP/IP servers - — — JVM bridge
>
POSIX processes POSIX processes
. APl | private | _ API >
¢ (B tocol | =1 '
Java threads w» | protoco ML threads
—
Scala actors - — — ML futures

Design principles:
e private protocol for prover connectivity
(asynchronous interaction, parallel evaluation)

e public Scala API
(timeless, stateless, static typing)

PIDE architecture

PIDE protocol functions

commands
— 3

Editor Prover

messages

-~

e type protocol_command = name -> input -> unit

e type protocol_message = name -> output -> unit

e outermost state of protocol handlers on each side (pure values)
e asynchronous streaming in each direction

—— editor and prover as stream-procession functions

PIDE architecture 10

Approximative rendering of document snapshots

edits
I

D
£
%]
@ g Prover
©

o

Editor

approximation

markup
I ——

editor knows text T', markup M, and edits AT (produced by user)
apply edits: 7" =T + AT (immediately in editor)
formal processing of T': AM after time At (eventually in prover)

= b=

temporary approximation (immediately in editor):
M = revert AT retrieve M ; convert AT

5. convergence after time At (eventually in editor):
M =M+ AM

PIDE architecture 11

Document content

Prover command transactions

e “small” toplevel state st: Toplevel.state

e command transaction ¢r as partial function over st
we write stg —'" sty for st; = tr st

e general structure: tr = read; eval; print

Interaction view:

tr stg =
let eval = read () in — read does not require st
let st;1 = eval sty In — main transition stg —> st
let () = print st1 in sty — print does not change st;

Important: purely functional transactions with managed output

Document content

13

Command scheduling

Sequential R-E-P Loop:

read eval print read — eval print read eval print
\ \ \ \ \ \ \ \ \

Sto 7 7 Stl 7 7 StQ 7 7 7 St3

N
~N

Document content 14

Command scheduling

Sequential R-E-P Loop:

read eval print read — eval print read eval print
\ \ \ \ \ \ \ \ \

Sto 7 7 Stl 7 7 St2 7 7 7 St3

N
~N

PIDE 2011/2012:
\l,read \Lfr’ead \l/read

St() _>eval Stl Heval 8t2 _>eval Stg

\l/pm'nt \l/ print \me’nt

Document content 14

Command scheduling

Sequential R-E-P Loop:

s tO 7“ead> eval> pm'm; P tl read> eval> prmi
PIDE 2011/2012:
\l,read \Lfr’ead \Lread
sto —y vl stq —yeval Sto
\l/pm'nt \l/pm‘nt
PIDE 2013,/2014:
\Lread \Lread \l/read
sto ——y vl stq ——yeval Sto

\L\L forks \L\me’nts \L\L forks \L \l/pm'nt 3

Document content

read eval print
Sto e > > Sl3
\ eval S t 3

\me’nt

\ eval

\l/\l/ forks

St3

\L\me’nts

14

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:
entries: linear sequence of command spans,
with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Document content

15

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:

entries: linear sequence of command spans,
with static command_id and dynamic exec_id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Notes:
e for each document version, the command exec assignment
identifies results of (single) ewval st or (multiple) print st

e the same execs may coincide for different versions
e non-visible / non-required commands remain unassigned

Document content 15

Document edits

Key operation: update ~~ assignment

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document.update: version_id — version_id —

(node x edit) list — state —

(command_id x exec_id list) list X state

Notes:
e document update restructures hypothetical execution
e command exec assignment is acknowledged quickly
e actual execution is scheduled separately
— protocol thread remains reactive with reasonable latency

Document content 16

Execution management

Execution management in Isabelle/PIDE

Prerequisites:
e native threads in Poly/ML (D. Matthews, 2006 . . .)

e future values in Isabelle/ML (M. Wenzel, 2008 . . .)

Execution in PIDE 2013/2014:
Hypothetical execution: lazy execution outline with

symbolic assignment of exec_ids to eval and prints
Execution frontiers: conflict avoidance of consecutive versions

Execution.start: unit — execution_id
Execution.discontinue: unit — unit
Execution.running: execution_id — exec_id — bool

Execution forks: managed future groups within execution context

Ezecution.fork: exec_id — (unit — «) — « future
Ezecution.cancel: exec_id — unit

Execution management 18

Asynchronous print functions

Asynchronous print functions

Observations:
e cumulative print operations consume more time than eval

(output of goals is slower than most proof steps)
e print depends on user perspective
e print may diverge or fail
e print augments results without changing proof state
e many different prints may be run independently

Approach:
e cach command transaction is associated with several exec_ids:
one eval + many prints

e document content forms union of markup

e print management via declarative parameters: startup delay, time-
out, task priority, persistence, strictness wrt. eval state

Asynchronous print functions 20

Application: print proof state

e parameters: {pri = 1, persistent = false, strict = true}

e change of perspective invokes or revokes asynchronous / parallel

prints sponteneously
e GUI panel follows cursor movement to display content

Q-+ jEdit - Unix.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

b Unix thy ($ISABELLE_HOME/src/HOL/Unix/) v
: ~ & Auto update |Update| | B
~ [theorem transition_type_safe: . ? jipdae) H
- h
assumes tr: "root —x— root'" Detach| [85% 3
and inv: "datt dir. root = Env att dir" =
. . - . - o
shows "Jatt dir. root' = Env att dir" vl il =1
" " = root —x— root'
~ |proof (cases "path_of x") Satt dir
case Nil S _
with tr inv ahow 7thesis Env att dir
by cases (auto simp add: access_def split: if_splits) c « path_of x = []
~ |next
case Cons gc;alatl s;bgoal):
. v 1. Jatt dir.
from tr obtain opt where : moir _
"root' = root VvV root' = update (path_of x) opt root Env att dir
bv cases auto v v
68,15 (16972/37993) (isabelle,sidekick, UTF-8-Isabelle) N r o U GEREE1423MB 4:27 PM

Asynchronous print functions

21

Application: automatically tried tools

e parameters: {delay = 1s, timeout = 4s, pri = —10, persistent
= true, strict = true}

e long-running tasks with little output, e.g. automated (dis-)provers

e comment on existing document content via information message

9 -+

File Edit Search Markers Folding View llfilities Marrns Pluging Heln
P

™ Scratch.thy (~/)
~ |theory Scratch

imports Main
begin

~@|Llemma "X

©O|Lemma "x = y" oops

x" oops|

JEdit - Scratch.thy (modified)

4 r

< |

HOL.refl:

-

Auto solve direct:

to= 7t

4 r

6,1 [.J"H LT

T aRreIre, J

Auto Quickcheck found a counterexample:

X = dz
Yy = a1

Auto Nitpick found a counterexample for

card 'a = 2:

Free variables:
X = di
Y = &2

85%

&

Asynchronous print functions

22

Application: query operations with user input

e parameters: {pri = 0, persistent = false, strict = false}
e separate infrastructure to manage temporary document overlays

e stateful GUI panel with user input, system output, and control of
corresponding command transaction (status icon, cancel button)

-+ JEdit - Unix.thy

Fle Edit Search Markers Folding View Utilities Macros Plugins Help

b Unix.thy ($ISABELLE HOME/src/HOV/UnIY) .
- Eheorem transition_type_safe: ‘
assumes tr: "root —x— root'"

and inv: "dJatt dir. root = Env att dir"

shows "Jatt dir. root' = Env att dir"
~ |proof (cases "path_of x")
case Nil
Search criteria: | Env name: simp -
[current context - | [40 lo Duplicates - |Apply| |85% -

found 14 theorem(s):

= Nested Environment.env.eq.simps(2): equal class.equal (Val ?al) (Env ?b'l ?fun'l) = False
= Nested Environment.env.eq.simps(l): equal_class.equal (Env 7?b'l ?fun'l) (Val ?al) = False
= Nested Environment.env.simps(3): Val ?a # Enw ?b' ?fun’

= | - J[Find)

62,1 (16776/37993) (isabelle,sidekick, UTF-8-Isabelle) " mir o U G1 task(s)E68/1427MB 4:56 PM

Asynchronous print functions 23

Application: Sledgehammer

e heavy-duty query operation, with long-running ATPs and SMTs
in the background (local or remote)

e progress indicator (spinning disk)
e clickable output

e implementation: trivial corollary of above concepts

0-+ JEdit - Scratch.thy (modified)

Fle Edit Search Markers Folding View Utilities Macros Plugins Help

m Scratch.thy (~/) v

> |Lemma "[a] = [b] — a = b"lby (metis the_elem set)

Provers: |e spass remote_vampire z3 remote_e_sine remoteiwaldmeisvI [Isar proofs ¢ [Ap_plyj Cancel | | Locate| | 100% v
"e": Try this: by (metis the_elem_set) (9 ms).
"spass": Try this: by (metis list.inject) (15 ms).
"remote_vampire": Try this: by (metis list.inject) (10 ms)
"remote_e_sine": Try this: by (metis list.inject) (10 ms).
"remote_waldmeister": The generated problem lies outside the prover's scope.
"z3": Try this: by (metis list.inject) (8 ms).

2]~ Sledgehammer

5,26 (60/42556) (isabelle,sidekick, UTF-8-Isabelle) 1 m r o U GIEEFIREPRINIB5:02 PM

Asynchronous print functions 24

Conclusions

Lessons learned

e Substantial reforms of LCF-style theorem proving are possible,
with big impact on infrastructure, but little impact on existing
tools.

e Parallel processing is relatively easy, compared to the difficulties
of asynchronous user interaction and tool integration.

e Real-world frameworks like JVM/Swing impose technical side-
conditions and challenges, notably for multi-platform support.

— Try out Isabelle/PIDE today and provide feedback on usability!

http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2014-RCO

Conclusions 26

http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2014-RC0

