
Asynchronous User Interaction and
Tool Integration in Isabelle/PIDE

Makarius Wenzel
Univ. Paris-Sud, LRI

July 2014

Project Paral-ITP
ANR-11-INSE-001

Introduction

Motivation

General aims:

• renovate and reform interactive (and automated) theorem proving
for new generations of users

• address paradigm shifts: multicore and pervasive parallelism

• document-oriented user interaction and tool integration

Introduction 2

Motivation

General aims:

• renovate and reform interactive (and automated) theorem proving
for new generations of users

• address paradigm shifts: multicore and pervasive parallelism

• document-oriented user interaction and tool integration

Ultimate challenge:

Introducing genuine interaction into ITP

• many conceptual problems

• many technical problems

• many social problems

Introduction 2

TTY loop (≈ 1979)

(Wikipedia: K. Thompson and D. Ritchie at PDP-11)

• user drives prover, via manual copy-paste

• inherently synchronous and sequential

Introduction 3

Proof General and clones (≈ 1999)

• user drives prover, via automated copy-paste and undo

• inherently synchronous and sequential

Introduction 4

PIDE: Prover IDE (≈ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

Introduction 5

PIDE: Prover IDE (≈ 2009)

Approach:

Prover supports asynchronous document model natively

Editor continuously sends source edits and receives markup reports

Tools may participate in document processing and markup

User constructs document content — assisted by
GUI rendering of cumulative PIDE markup

PIDE applications:

Isabelle/jEdit the default user-interface of Isabelle

Isabelle/Eclipse by Andrius Velykis (for Isabelle2013)
https://github.com/andriusvelykis/isabelle-eclipse

Isabelle/Clide by Martin Ring and Christoph Lüth (subsequent talk)
https://github.com/martinring/clide

Introduction 5

https://github.com/andriusvelykis/isabelle-eclipse
https://github.com/martinring/clide

Isabelle/jEdit Prover IDE (2014)

Introduction 6

Automatically tried tools (2014)

Introduction 7

PIDE architecture

The connectivity problem

private
protocol

API API

S
ca

la

M
L

ML threads

ML futures

POSIX processesPOSIX processes

Java threads

Scala actors

TCP/IP servers

MLScala

JVM bridge

Design principles:
• private protocol for prover connectivity

(asynchronous interaction, parallel evaluation)

• public Scala API
(timeless, stateless, static typing)

PIDE architecture 9

PIDE protocol functions

Editor Prover

commands

messages

• type protocol_command = name -> input -> unit

• type protocol_message = name -> output -> unit

• outermost state of protocol handlers on each side (pure values)

• asynchronous streaming in each direction

−→ editor and prover as stream-procession functions

PIDE architecture 10

Approximative rendering of document snapshots

Editor Prover

edits

markup

p
ro
ce
ss
in
g

a
p
p
ro
x
im

a
ti
o
n

Δt

1. editor knows text T , markup M , and edits ∆T (produced by user)

2. apply edits: T ′ = T + ∆T (immediately in editor)

3. formal processing of T ′: ∆M after time ∆t (eventually in prover)

4. temporary approximation (immediately in editor):
M̃ = revert ∆T ; retrieve M ; convert ∆T

5. convergence after time ∆t (eventually in editor):
M ′ = M + ∆M

PIDE architecture 11

Document content

Prover command transactions

• “small” toplevel state st : Toplevel .state

• command transaction tr as partial function over st

we write st0 −→tr st1 for st1 = tr st0
• general structure: tr = read ; eval ; print

Interaction view:
tr st0 =
let eval = read () in — read does not require st0
let st1 = eval st0 in — main transition st0 −→ st1
let () = print st1 in st1 — print does not change st1

Important: purely functional transactions with managed output

Document content 13

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

Document content 14

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

PIDE 2011/2012:
↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓print ↓print ↓print · · ·

Document content 14

Command scheduling

Sequential R-E-P Loop:

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

PIDE 2011/2012:
↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓print ↓print ↓print · · ·

PIDE 2013/2014:
↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓↓forks ↓↓prints ↓↓forks ↓↓prints ↓↓forks ↓↓prints · · ·

Document content 14

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:

entries: linear sequence of command spans,
with static command id and dynamic exec id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Document content 15

Document nodes

Global structure: directed acyclic graph (DAG) of theories

Local structure:
entries: linear sequence of command spans,

with static command id and dynamic exec id

perspective: visible and required commands,
according to structural dependencies

overlays: print functions over commands (with arguments)

Notes:
• for each document version, the command exec assignment

identifies results of (single) eval st or (multiple) print st

• the same execs may coincide for different versions

• non-visible / non-required commands remain unassigned

Document content 15

Document edits

Key operation: update assignment

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document .update: version id → version id →

(node × edit) list → state →
(command id × exec id list) list × state

Notes:

• document update restructures hypothetical execution

• command exec assignment is acknowledged quickly

• actual execution is scheduled separately

−→ protocol thread remains reactive with reasonable latency

Document content 16

Execution management

Execution management in Isabelle/PIDE

Prerequisites:
• native threads in Poly/ML (D. Matthews, 2006 . . .)

• future values in Isabelle/ML (M. Wenzel, 2008 . . .)

Execution in PIDE 2013/2014:
Hypothetical execution: lazy execution outline with

symbolic assignment of exec ids to eval and prints

Execution frontiers: conflict avoidance of consecutive versions
Execution.start: unit → execution id
Execution.discontinue: unit → unit

Execution.running: execution id → exec id → bool

Execution forks: managed future groups within execution context
Execution.fork : exec id → (unit → α) → α future

Execution.cancel : exec id → unit

Execution management 18

Asynchronous print functions

Asynchronous print functions

Observations:
• cumulative print operations consume more time than eval

(output of goals is slower than most proof steps)

• print depends on user perspective

• print may diverge or fail

• print augments results without changing proof state

• many different prints may be run independently

Approach:
• each command transaction is associated with several exec ids:

one eval + many prints

• document content forms union of markup

• print management via declarative parameters: startup delay, time-
out, task priority, persistence, strictness wrt. eval state

Asynchronous print functions 20

Application: print proof state

• parameters: {pri = 1, persistent = false, strict = true}
• change of perspective invokes or revokes asynchronous / parallel

prints sponteneously

• GUI panel follows cursor movement to display content

Asynchronous print functions 21

Application: automatically tried tools

• parameters: {delay = 1s, timeout = 4s, pri = −10, persistent
= true, strict = true}
• long-running tasks with little output, e.g. automated (dis-)provers

• comment on existing document content via information message

Asynchronous print functions 22

Application: query operations with user input

• parameters: {pri = 0, persistent = false, strict = false}
• separate infrastructure to manage temporary document overlays

• stateful GUI panel with user input, system output, and control of
corresponding command transaction (status icon, cancel button)

Asynchronous print functions 23

Application: Sledgehammer

• heavy-duty query operation, with long-running ATPs and SMTs
in the background (local or remote)

• progress indicator (spinning disk)

• clickable output

• implementation: trivial corollary of above concepts

Asynchronous print functions 24

Conclusions

Lessons learned

• Substantial reforms of LCF-style theorem proving are possible,
with big impact on infrastructure, but little impact on existing
tools.

• Parallel processing is relatively easy, compared to the difficulties
of asynchronous user interaction and tool integration.

• Real-world frameworks like JVM/Swing impose technical side-
conditions and challenges, notably for multi-platform support.

−→ Try out Isabelle/PIDE today and provide feedback on usability!

http://isabelle.in.tum.de

http://isabelle.in.tum.de/website-Isabelle2014-RC0

Conclusions 26

http://isabelle.in.tum.de
http://isabelle.in.tum.de/website-Isabelle2014-RC0

