
HOL with Definitions: Semantics, Soundness,
and a Verified Implementation

Ramana Kumar1 Rob Arthan2

Magnus O. Myreen1 Scott Owens3

1Computer Laboratory, University of Cambridge

2School of EECS, Queen Mary, University of London

3School of Computing, University of Kent

Interactive Theorem Proving, 2014
Vienna Summer of Logic

Verified HOL: The Goal

Produce a useful theorem proving system together with a
proof that every theorem obtained by running the system
(according to the semantics of the machine-code) is true
according to the semantics of higher-order logic.

Achieved: formal semantics for HOL, soundness of the
inference system and principles of definition, verified
high-level implementation

Remaining: interface to proved theorems (printing), verification
of LCF architecture

Verified HOL: The Goal

Produce a useful theorem proving system together with a
proof that every theorem obtained by running the system
(according to the semantics of the machine-code) is true
according to the semantics of higher-order logic.

Achieved: formal semantics for HOL, soundness of the
inference system and principles of definition, verified
high-level implementation

Remaining: interface to proved theorems (printing), verification
of LCF architecture

Why Verify a Theorem Prover?

For Leverage

The theorem prover sits at centre of the trusted code base.

For Understanding

Formalisation clarifies details of the logic and the implementation.

As a Catalyst

Being medium-sized, with a clear specification, a verified theorem
prover is a good testing ground for application-verification tools.

Verified HOL: The Approach

Specification of Set Theory

HOL Inference Rules

Monadic Kernel Functions

CakeML Implementation of Kernel

semantics&soundness

refinement proof

automatic translation

CakeML Implementation of Prover

x86-64 Implementation of Prover

abstraction proof

verified compilation

Verified HOL: The Approach

Specification of Set Theory

HOL Inference Rules

Monadic Kernel Functions

CakeML Implementation of Kernel

semantics&soundness

refinement proof

automatic translation

CakeML Implementation of Prover

x86-64 Implementation of Prover

abstraction proof

verified compilation

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

Towards Self-Verification of HOL Light

Harrison, IJCAR 2006:

Definition of Set Theory

Basic HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

refinement proof

automatic translation

Does not include rules for making definitions.

2006 2013 2014

Towards Self-Verification of HOL Light

Myreen et al, ITP 2013:

Definition of Set Theory

Basic HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

refinement proof

automatic translation

Does not connect to the semantics.

2006 2013 2014

Towards Self-Verification of HOL Light

This work:

Specification of Set Theory

Full HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

refinement proof

automatic translation

Includes both semantics and rules for definitions.

2006 2013 2014

Towards Self-Verification of HOL Light

This work (after the paper):

Specification of Set Theory

Full HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

refinement proof

automatic translation

Includes both semantics and rules for definitions.

2006 2013 2014

Towards Self-Verification of HOL Light

This work (in the paper):

Specification of Set Theory

Stateless HOL Inference Rules

Stateful HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

containment proof

refinement proof

automatic translation

Includes both semantics and rules for definitions.

2006 2013 2014

Towards Self-Verification of HOL Light

This work (after the paper):

Specification of Set Theory

Full HOL Inference Rules

semantics&soundness

Monadic Kernel Functions

CakeML Implementation of Kernel

refinement proof

automatic translation

Includes both semantics and rules for definitions.

2006 2013 2014

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

Specifying the Semantic Domain

Basic Idea

is set theory (mem : U → U → bool)

Specifying Axioms

▶ Extensionality
∀ x y . x = y ⇐⇒ ∀ a. mem a x ⇐⇒ mem a y

▶ Separation
∀ a x P . mem a (sep x P) ⇐⇒ mem a x ∧ P a

▶ etc.

Compared to Defining the Universe

Harrison’s Original Approach

mem : V → V → bool
level (sep x P) = level x
mem a (sep x P) ⇐⇒ mem a x ∧ P a

Advantages of New Approach

▶ Avoid stratifying sets into levels, get extensionality.

▶ Isolate the assumption required for the axiom of infinity.

Derived Operations

Define Useful Sets
Empty set, Cartesian products, functions-as-graphs, etc.

Prove Interface Theorems
⊢ is set theory mem ⇒
∀ f x s t .
mem x s ∧ mem (f x) t ⇒
apply mem (abstract mem s t f) x = f x

A layer of such theorems, supported by the set theory axioms, is
what supports the HOL soundness proof.

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

Formalising HOL Syntax

Define Types and Terms

type = Tyvar string | Tyapp string (type list)
term = Var string type | Const string type |

Comb term term | Abs string type term

Define Inference System

theory ok thy
p has type Bool

term ok (sigof thy) p

(thy , [p]) ⊩ p
ASSUME

theory ok thy
term ok (sigof thy) t

(thy , []) ⊩ t == t
REFL

etc.

Semantics of Types and Terms

Types are Inhabited Sets

typesem δ τ (Tyvar s) = τ s
typesem δ τ (Tyapp name args) =
δ name (map (typesem δ τ) args)

Terms are Elements of Their Types

termsem mem Θ (δ, γ) (τ, σ) (Abs x ty b) =
abstract mem (typesem δ τ ty) (typesem δ τ (typeof b))
(λm. termsem mem Θ (δ, γ) (τ, ((x , ty) 7→ m) σ) b)

etc.

(In Stateless HOL, not shown, these need to be in mutual
recursion and are rather more complicated.)

Soundness in a Fixed Context

Entailment
(thy , h) |= c holds if:
every interpretation (δ, γ) that models thy also satisfies h |= c.

Soundness Theorem
⊢ is set theory mem ⇒
∀ thy h c. (thy , h) ⊩ c ⇒ (thy , h) |= c

Proved by induction on the inference system.
(mem is used by the term semantics inside (thy , h) |= c.)

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

Theory Updates

Signatures

▶ Sequents carry a context: (thy , h) ⊩ c.

▶ thy says which constants are defined and their arity/type.

▶ thy also carries the set of axioms.

Extension Principles

▶ Basic idea: extend the theory with new constants or axioms.

▶ The sound rules for doing so have many side-conditions
(hence skipped in previous formalisations).

▶ Simply adding new type operators, constants, or axioms to
the theory is also possible (the latter may not be sound).

Soundness of Updates

Each update

receives some input data, then

▶ introduces axioms,

▶ introduces constants or type operators, and,

▶ has side-conditions.

An update is sound if

▶ whenever there is a model of the theory before the update,

▶ and the side conditions hold, then

▶ there is a model of the theory after the update.

Mainly: the introduced axioms (which mention the introduced
constants) are consistent.

Type Definition

Data and Side-Conditions

▶ TypeDefn name pred abs rep,

▶ (thy , []) ⊩ Comb pred witness,

▶ pred is closed, and all names are fresh.

Introduced Constants and Axioms

▶ Type operator name with type variables in pred as arguments.

▶ Constants abs and rep, functions between the new type and
subset of the type of witness where pred holds.

▶ Axioms asserting abs and rep form a bijection.

Soundness
(For full details: see code at https://cakeml.org.)

https://cakeml.org

Constant Specification

Data and Side-Conditions

▶ ConstSpec (x̄ = t̄) prop,

▶ (thy , x̄ = t̄) ⊩ prop,

▶ FV prop ⊆ x̄ , t̄ all closed, and all type variables in type,

▶ x̄ all distinct and fresh names.

Introduced Constants and Axioms

▶ New constants c̄ for each x̄ .

▶ New axiom: prop [̄c/x̄].

Soundness

For details, see Rob Arthan’s talk tomorrow.

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

The Three Mathematical Axioms

The Axioms

1. Extensionality: (λ x . f x) = f

2. Choice: P x ⇒ P ((ε) P)

3. Infinity: ∃ f . ONE ONE f ∧ ONTO f

Formalised as Updates

Choice: NewAxiom (Implies (Comb (Var "P" . . .) . . .) . . .) ::
NewConst "ε" (Fun (Fun A Bool) A) :: ctxt

The same framework can handle user-supplied axioms.

Consistency, Avoiding Self-Consistency

Main Theorem
⊢ is set theory mem ∧ (∃ inf . INFINITE { a | mem a inf }) ⇒
∀ ctxt .
ctxt extends hol ctxt ∧
(∀ p. NewAxiom p ∈ ctxt ⇒ NewAxiom p ∈ hol ctxt) ⇒
∃ p1 p2. (thyof ctxt , []) ⊩ p1 ∧ ¬((thyof ctxt , []) ⊩ p2)

Explanation

Assuming we have a set-theory satisfying the axiom of infinity,
every extension of HOL’s initial theory context that does not
introduce new axioms has both provable and unprovable sequents.

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

HOL Light Kernel as Monadic Functions

Inference Rules

▶ Define theorem datatype:
Sequent (h : hol term list) (c : hol term).

▶ For each clause of the (thy , h) ⊩ c relation, define a
monadic function that returns its conclusion.

▶ For example:

every (type ok (tysof thy)) (map fst tyin)
(thy , h) ⊩ c

(thy ,map (INST tyin) h) ⊩ INST tyin c
INST TYPE

becomes

INST TYPE tyin (Sequent h c) =
bind (map (inst tyin) h)
(λ l . bind (inst tyin c) (λ x . return (Sequent l x)))

HOL Light Kernel as Monadic Functions

Inference Rules

▶ Define theorem datatype:
Sequent (h : hol term list) (c : hol term).

▶ For each clause of the (thy , h) ⊩ c relation, define a
monadic function that returns its conclusion.

▶ For example:

every (type ok (tysof thy)) (map fst tyin)
(thy , h) ⊩ c

(thy ,map (INST tyin) h) ⊩ INST tyin c
INST TYPE

becomes

INST TYPE tyin (Sequent h c) =
bind (map (inst tyin) h)
(λ l . bind (inst tyin c) (λ x . return (Sequent l x)))

HOL Light Kernel as Monadic Functions

Principles of Definition

Monadic functions are in a state-exception monad.
The state includes:

▶ the term and type constants,

▶ the axioms, and,

▶ a log of the definitions.

For each theory-extension principle, define a monadic function.
This function:

▶ takes the data as input,

▶ checks the side-conditions, and,

▶ updates the references above.

HOL Light Kernel as Monadic Functions

Principles of Definition

Monadic functions are in a state-exception monad.
The state includes:

▶ the term and type constants,

▶ the axioms, and,

▶ a log of the definitions.

For each theory-extension principle, define a monadic function.
This function:

▶ takes the data as input,

▶ checks the side-conditions, and,

▶ updates the references above.

Verifying the Monadic Functions

Basic Idea
Prove: whenever a monadic function produces Sequent h c in some
good context thy on good arguments, then (thy , h) ⊩ c holds.

Why Log Definitions?

▶ The semantics of theorem values is in context of the log.

▶ In real HOL Light the log is not stored (ephemeral).

▶ We could avoid the log in our state monad, at the expense of
an existential quantifier on the verification theorems.

Outline

Motivation
Verified Theorem Provers
Previous Work and Context

Formalising all of HOL
Specification of Set Theory
Basic HOL Semantics and Soundness
Supporting a Context of Definitions
Consistency of HOL’s Axioms

(Towards) Verifying HOL Light
Monadic Implementation in HOL
Producing CakeML for Compilation

Automatic Proof-Producing Translation

Shallow to Deep

INST TYPE tyin (Sequent h c) =
bind (map (inst tyin) h)
(λ l . bind (inst tyin c) (λ x . return (Sequent l x)))

becomes

fun inst_type tyin (Sequent (h,c)) =

let val l = map (inst tyin) h

val x = inst tyin c

in Sequent (l,x) end

Certificate Theorem
Generated theorem relates above syntax via the operational
semantics of CakeML to the monadic function INST TYPE.

Proof Effort

Breakdown of Lines of Proof Script

Set-Theory Specification 319

HOL Syntax 347
Syntax Lemmas 1852

HOL Semantics 693
HOL Soundness & Consistency 2368

Monadic Kernel Functions 628
Kernel Verification 2644

Verified CakeML Production 1429

10280

Builds on Existing Infrastructure

Namely: HOL4 and CakeML

Summary

Achievements

▶ The semantics and soundness of all of HOL (including
definitions and axioms) has now been formalised in HOL.

▶ We have produced an implementation of the HOL Light kernel
in CakeML, and verified it against the above semantics.

Outlook

▶ Next step: package the verified kernel as a module in a
verified theorem prover.

▶ Self-verifying theorem provers raise interesting opportunities
for logical reflection.

	Motivation
	Verified Theorem Provers
	Previous Work and Context

	Formalising all of HOL
	Specification of Set Theory
	Basic HOL Semantics and Soundness
	Supporting a Context of Definitions
	Consistency of HOL's Axioms

	(Towards) Verifying HOL Light
	Monadic Implementation in HOL
	Producing CakeML for Compilation

