
A More Formal Approach to
“Computer Science: Principles”

Rex Page
University of Oklahoma
Norman, OK, USA
page@ou.edu

Ruben Gamboa
University of Wyoming
Laramie, WY, USA
ruben@uwyo.edu

ABSTRACT
We report on a course, entitled “How Computers Work:
Logic in Action”, which we have offered the past few years at
the University of Oklahoma, and which will be offered soon
at the University of Wyoming. Intended for non-CS majors,
this course is our answer to the question, What would you
teach if you had only one course to help students grasp the
essence of computation and perhaps inspire a few of them
to make computing a subject of further study? Assuming
no prior knowledge of computers or mathematics beyond
high school algebra, the course is compatible with the Com-
puter Science: Principles approach proposed by the College
Board, although it is a significant departure from the pilot
courses that are currently following this approach.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Mechan-
ical theorem proving ; D.1.1 [Programming Techniques]:
Applicative (Functional) Programming

Keywords
First year, service course, formal computation.

1. BACKGROUND
For the past few years, we have had the opportunity to

teach a broad computer science course to honors students at
the University of Oklahoma. The corps of honors students
is a self-selected group, with above average abilities, motiva-
tion, or both. To qualify for the honors program, students
must hold a grade point average (GPA) of at least 3.4 out
of 4.0 when they join the honors program, and they must
maintain this GPA at the time of graduation to receive an
honors designation in their diploma. Because of their high
academic engagement, these students can succeed in almost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’13,March 6–9, 2013, Denver, Colorado, USA.
Copyright 2013 ACM 978-1-4503-1775-7/13/03 ...$15.00.

any course, so they make our job as professors easy. How-
ever, their diverse backgrounds also make them particularly
challenging: 44% of the students who have taken our course
are science majors, ranging from physics and chemistry to
meteorology; 31% are engineering majors, including com-
puter science and computer engineering, as well as many
traditional engineering disciplines; and 22% are humanities,
social sciences, or business majors. Another measure of the
students’ disparate backgrounds is provided by their com-
puting experience: 60% had some prior exposure to pro-
gramming, primarily in high school, but the others knew
very little of computing. One place where the students were
similar to each other was in academic classification: nearly
all of them were in their first two years of college.

So our challenge was clear: How to design a course that
presents an overview of the essential principles of computa-
tion to a group of talented students with varying degrees of
computing experience and mathematical preparation. This
immediately presented us with two seemingly conflicting
challenges. Since the students were majoring in many dif-
ferent disciplines, the only guarantee we had with regards
to mathematical background was the minimum required by
the university, namely high school algebra. So it was imper-
ative that the course be accessible to a student with only
this minimum background. Of course, this also means that
the course is accessible to many, if not most, high school
students. And this leads into the second challenge. While
the course must remain accessible to students with little
mathematical preparation and no prior exposure to com-
puter science, it must also be engaging and challenging to
those students who have had some programming experience.

But this only masks the deeper issue. What exactly are
these “essential principles of computation” that we wish stu-
dents to learn? Our answer to this question is influenced
by the First Year curriculum proposed by Felleisen and the
PLT group[7, 8], but adapted and pared down so that it can
be fruitfully presented in a single semester to students who
may not take another computer science course. In partic-
ular, the First Year blends program design, discrete math,
and the beginnings of software verification using the auto-
mated theorem prover ACL2, and all these are also features
of our course [12, 6].

Here are the principles we wanted to impart to students.
To start with, students should build a mental model of com-
putation, so they can see how it’s possible for mechanical
devices to perform computations. So one essential principle
is as follows:

1. Algebraic formulas can specify computations.

Once students understand that computations can be spec-
ified using ordinary algebra, it is possible to discuss how
software systems can be constructed. This leads to the next
essential principles:

2. Abstractions allow solutions to small problems to be
arranged into the solution to big ones.

3. Important, complex algorithms derive from simple, def-
initional properties.

The relevance of these ideas is made clear by considering
some applications of software. Our goal is to make sure
that students see the connection between software systems—
specified as sets of algebraic equations—and the real world.
We also stress the importance of getting the software right,
precisely because the software is solving real-world problems.

4. There is a strong correspondence between logic formu-
las and digital circuits.

5. Models expressed in software capture the behavior of
processes and devices.

6. Testing and reasoning critically about software are im-
portant tools in ensuring that the software works as
intended.

The relevance of the material is supported even more by con-
sidering applications familiar to students, e.g,. the internet.
What we want the students to understand is that comput-
ers work on the concept of scale. The big applications they
are familiar with operate on the exact same concepts they
learn in class. The only difference is that the problems are
bigger, so abstraction plays a major role, and the final solu-
tion is composed of many, many steps. In other words, the
main difference between computing as they see it in class
and computing as practiced in, say, Google, is one of scale.
Solving the scale problem is an engineering problem, the
main problem studied in a computer science degree.

7. Different definitional properties can specify the same
functions, but at vastly different computational ex-
pense.

8. Computational expense makes some useful devices fea-
sible and others infeasible.

9. All of the ideas in the course bear on the ability of com-
puters to deal with information on the massive scale
needed to provide services like search engines, internet
storefronts, and social networks.

This is not the typical introductory computer science course!
The material does not overlap directly with the mainstream
material from a computer science or computer engineering
program, so those students with prior exposure to computers
find it new and challenging.
A feature of this course is that it includes topics from logic

and software verification, which are usually not included in
the computer science curriculum. We believe that the course
has been successful because of the algebraic description of
computation that we use. In this view, programs are really
ordinary equations, very similar to the equations students
have seen in high school algebra. So the students learn
about computation in a comfortable framework. Moreover,
this framework lends itself to automatic verification, and

students learn how to use the theorem prover ACL2 to au-
tomate many of the reasoning tasks. ACL2 is not completely
automatic, usually requiring much assistance from its users.
However, the necessary assistance can be minimized by care-
fully choosing the programs to study and the properties un-
der consideration, so that the proofs of these properties can
be readily found using ACL2’s heuristics. Others who have
also incorporated ACL2 into lower division computer sci-
ence courses have also found that students can benefit from
using ACL2 for the purposes of the course, without hav-
ing to become ACL2 experts [6, 2]. The end result is that
students learn how to think formally about computation,
without being overwhelmed by the logical machinery that
would normally be required.

In its approach and objectives, this course has much in
common with the Computer Science: Principles course pro-
posed by the college board [15]. For instance, our course is
not designed to teach students how to program. Students
do learn some programming, but not enough to take on any
serious development project. Instead, the course tries to
provide insight into the nature and relevance of computa-
tion.

Our course differs significantly from other courses in the
Computer Science: Principles vein. Currently, a number
of pilot courses are running nationwide [16]. The majority
of these use scripting languages to facilitate programming.
Python is popular for this purpose, as are visual scripting
languages like BYOB (aka SNAP!) and App Inventor [10,
9]. Doing so has a major advantage, in that it allows to
create software that is very similar to what they use daily,
e.g., App Inventor allows them to build mobile applications
with only minimum effort. It also allows more time to be
spent on the social aspects of computing, so many of these
courses feature topics from privacy and security, as covered
in the textbook from Abelson et al [1]. There are many
things we like about this approach, but we chose to go in
a different direction because we wanted students to really
understand the layers of abstraction that allow simple ideas
from logic, which are readily implemented as circuits, to im-
plement complex applications, e.g., mobile apps or popular
websites. And we also wanted to emphasize how mistakes
in software can be avoided and the importance of doing so,
since software is increasingly relevant in our lives in many
different contexts.

We will address the connections between our course and
the principles approach in Sect. 3. But first, we will describe
the course in more detail in Sect. 2, and we share the results
from the previous offerings of this course in Sect. 4.

2. COURSE CONTENTS
We use equations extensively, both to describe functions

and to present properties that these functions should have.
Equations are a good fit for a computational approach based
on algebra, but they are not the usual way in which software
is described. For example, the imperative model of program-
ming introduces variables to hold state, assignment state-
ments to mutate state, and other programming constructs
to control the execution of the program. Consequently, we
chose to use a purely functional approach to programming,
and in particular we use the language ACL2, which is a
variant of Common Lisp. To our knowledge, undergraduate
students are only exposed to ACL2 in a few courses nation-
wide. But what makes it ideal for our purpose is that it is

not just a programming language. It is also a logic of com-
putation and an automated theorem prover for this logic. So
students learn the basics of programming and of reasoning
about such programs.
We introduce the equational style of programming with

a handful of examples. For example, the classic Lisp list
operations can be introduced with the following equations:

(cons x [x1 x2 ... xn]) = [x x1 x2 ... xn] {cons}
(first [x1 x2 ... xn+1]) = x1 {fst}
(rest [x1 x2 ... xn+1]) = [x2 ... xn+1] {rst}

Note that the equations are labeled, so that we can refer to
them later.
Students have no problems understanding these equations,

and they quickly gain an understanding of what these func-
tions are. In fact, they readily accept (without any sense of
proof) that the following two equations must also hold:

(first (cons x [x1 x2 ... xn])) = x {fst-id}
(rest (cons x [x1 x2 ... xn])) = [x1 x2 ... xn]

{rst-id}
Even at this early stage, we can introduce one of the main

ideas of the course, namely that testing and critical reason-
ing are necessary to ensure that the functions work as ex-
pected. Students certainly believe the last two equations—
but are they actually true? To verify this, we make use of
the DoubleCheck testing framework of Dracula [6, 5]. In the
style of Racket (formerly known as DrScheme), Dracula is a
front-end that makes it easier for many students to interact
with ACL2. One of its most useful features is DoubleCheck,
which was inspired by the QuickCheck testing framework for
Haskell. It allows students to specify properties that should
be true of either built-in functions or new functions they
write. For example, a student could submit the property
fst-id to DoubleCheck, which would then generate random
tests to see if the property is likely. If the tests pass—and
in this case, they surely will—the library moves on to the
second (“double”) check. I.e., it submits the property to the
ACL2 theorem prover, which tries to prove it automatically.
In the case of fst-id, the theorem prover is able to verify the
property automatically, so the student can be assured that
the property in fact holds for all inputs.
The equations fst and rst capture the essence of first and

rest, but neither equation fully captures the corresponding
function. For example, what is first of the empty list?
The actual answer to this question is not important, and
different programmers (and even programming languages)
will provide different answers. But what is important is
that there be some answer. E.g., we may choose to use the
following equation to resolve the matter:

(first []) = [] {fst-empty}
Thus students are introduced to the concept of function def-
initions. In this model, functions are defined by a set of
equations. We stress that the equations must satisfy two
key properties. First, they must be consistent. That is,
no two equations can provide different results for the same
input. Second, they must be comprehensive. All forms of
input must match the left-hand side of at least one equation.
Things become more complicated when inductive (also

called recursive) definitions are necessary. Opinions cer-
tainly vary as to whether recursion is a topic suitable for

beginning programmers [13, 17, 3, 11]. However, we find
that inductive definitions arise naturally in the context of
properties. To see this point, consider the square root func-
tion, which is very familiar to all students. They would
certainly believe that

√
x · y =

√
x
√
y is true, and nobody

would remark that this is an inductive property. Of course,
this one equation is not a definition of square root, but that
is precisely the point. Properties that use the same function
symbol in the left and right-hand sides pose no immediate
problem, and some inductive properties can be used to de-
fine functions.

In fact, students readily accept the following properties
for the append function:

(append (cons x xs) ys) = (cons x (append xs ys))
{app1}

(append [] ys) = ys {app0}
In the beginning, we encourage students to think of these
equations simply as properties that any reasonable defini-
tion of append must satisfy. Once the students are comfort-
able with these equations, we extend the notion of function
definition—that is, definitions by way of equations—to in-
clude inductive definitions. As before, such equations should
be consistent and comprehensive, but now we add a third
criteria for a valid definition. The equations must be con-
structive, i.e., any inductive reference to an operator must
be on a reduced computation. In the case above, the in-
ductive reference to append is on the value of xs which is
smaller than (cons x xs) in the left-hand side.

What students learn is that all properties of any function
derive from a set of equations, as long as these are consistent,
comprehensive, and constructive. These three characteristics
of definitional equations, which we refer to as “The Three
Cs,” form a recurring theme throughout the course.

Students analyze functions defined inductively in the same
way as they do other functions. For instance, students (or
the instructors) can state properties that they believe the
functions should hold, such as the associativity of append.
These properties can be expressed using the DoubleCheck

testing framework, and Dracula will test the properties on
random values. If the tests pass, the property is then sub-
mitted to the ACL2 theorem prover for formal verification.
The difference is that in this case the proof requires induc-
tion.

At this point, students mostly believe that all properties of
the function append must follow algebraically from its defin-
ing equations. We reinforce this concept now by demon-
strating how the associativity of append can be proved for-
mally. A pencil-and-paper proof of this property is based
on induction on the length of the list xs. The base case
uses the defining equation {app0}, while the inductive case
relies on {app1} and, of course, the inductive hypothesis.
While students do not necessarily learn how to carry out
these proofs by themselves, they come to appreciate that
the same algebra they learned in high school, albeit with
less familiar functions, such as cons, can be used effectively
to think about software and to guarantee that a particular
function works as expected.

It should be noted that proofs of basic facts, such as the
associativity of append, can be quite challenging. Students
do learn how to write down some of these proofs, and they
certainly learn how to read them. Mostly, however, they

use ACL2 to find proofs of the more substantial theorems.
Here, too, the students can run into trouble, because even
though ACL2 is fully automated, it does not always find
proofs of even basic theorems. This means that students
must also discover (with some help) key lemmas that can
be used to guide ACL2 to the desired results. To minimize
the students’ frustration, we have designed specific problems
that work exceptionally well with ACL2’s heuristics, so that
many proofs are found fully automatically.
In the remainder of the course, students gain more experi-

ence with programming using equations to define functions.
Our approach is to introduce programs in a variety of small
application domains, and to ask students to write (or com-
plete) some of the functions that are useful in that domain.
Of course, discovering equations satisfying“The Three Cs”

that can define a particular function is no easy task! This
requires more than an understanding of algebraic rules. We
tell students, and they soon agree, that it requires insight
and creativity, even though defining functions entails “noth-
ing more than” working with ordinary, algebraic equations
and classical logic. In fact, this is another recurring theme
in the class. Simple mechanisms can combine to produce ex-
tremely complex results, sometimes by accident, and some-
times not—and doing it intentionally is profoundly creative.
The first application domain that we use as a program-

ming playground is the world of propositional logic and com-
binational digital circuits. This domain is advantageous, be-
cause the equations of Boolean algebra are very similar to
the familiar equations from high school algebra. We show
students how all properties of Boolean algebra, including
the traditional truth tables, can be derived from a hand-
ful of equations that suffice to capture the meaning of the
propositional connectives. This gives students practice in
the type of algebraic reasoning that they will later employ
when reasoning about more complicated functions.
After introducing propositional logic, we move on to dig-

ital circuits. This serves two distinct purposes. First, it
allows us to directly connect what the students have been
doing in the course so far to working, physical computing de-
vices. Second, and more important, it begins an explicit dis-
cussion on the nature of abstraction: propositional formulas
and combinational circuits are quite obviously related, and
students can analyze one of them by studying the other.
Next, we provide a brief introduction to computer arith-

metic, culminating in a ripple-carry adder circuit. Again,
this provides us with an excellent opportunity to discuss
abstraction. At the top level is ordinary arithmetic, which
the students take for granted. Below that are the rules of
numerals, i.e., lists of digits and arithmetic operators on
those lists. Numerals are a representation for numbers, and
different strings of numerals can represent the same num-
ber. This point is driven home by considering the binary
representation of numbers. The process of abstraction con-
tinues, because binary digits themselves represent different
voltages in wires of digital circuits. The result of all this is
that students see how it is that physical devices can perform
meaningful computations. I.e., they can see how a partic-
ular circuit consisting of logical gates can seem to compute
the sum of two numbers. More than that, the different lay-
ers of abstraction are precisely defined, and the transitions
between these layers can be formalized by a set of equations
which be checked with DoubleCheck and verified informally

with hand proofs and formally with ACL2. This culminates
in the following ACL2 theorem, which is presented in class:

(implies (and (bitp c0) (bit-listp x) (bit-listp y)

(= (len x) (len y)))

(let* ((a (adder c0 x y))

(s (first a))

(c (second a)))

(= (num (append s (list c)))

(+ c0 (num x) (num y)))))

This theorem uses the “type-checking” functions bitp and
bit-listp which recognize bits and lists of bits, respec-
tively. It also uses the function num which converts a list
of bits into a number, and adder which adds two lists of
bits encoding numbers in two’s complement notation. All
of these functions were previously defined in our equational
style.

This process continues with the introduction of some typ-
ical data structures, such as trees and hashes, and different
combinational circuits, such as multiplexers. As the prob-
lems get bigger, we provide the students with more and more
guidance and supporting artifacts, so that they can continue
learning without having to write (and reason about) an inor-
dinate amount of code. Eventually, we reach the top of the
abstraction pyramid in a very high-level discussion of com-
puting systems that students use in their daily lives. Here
the discussion is at the conceptual level, and not at all at
the nuts-and-bolts level of a ripple-carry adder.

The first major application comes from Facebook. Through-
out the course, we have been convincing students that simple
mechanisms can combine to produce extremely complex re-
sults, and that the same basic mechanism they learn about
in class have been put together in creative ways to produce
all the computing artifacts they have already seen. The
only mystery is how to deal with scale, both the scale of the
program itself and the scale of the data it works on—and
Facebook is a perfect case study on scale.

We tell the students that Facebook must combine data
from two large datasets in order to produce a single page. It
must consult its dataset of “friends” so that it knows which
status updates to post, and it must also ccons-first-rest-
defonsult its dataset of “statuses” so that it knows what your
friends have been saying. Without providing any evidence,
we tell them that combining these two datasets is conceptu-
ally simple but computationally infeasible with traditional
technology because of the sheer number of facts. As a conse-
quence, Facebook developed its own database solution, the
NoSQL database Cassandra [14]. We do not expect students
to learn much about databases, whether relational or NoSQL
in this course. However, students can grasp the essence of
Cassandra replication, and they can readily see how this
affords the massive scalability required by Facebook. Stu-
dents also see how Cassandra uses many of the algorithms
and data structures they have already seen, such as hash
functions and lists.

Next, students learn a little about scaling at Google. Again,
the need for scale is easily motivated because of the sheer
size of the web. We ask students to consider the difficulty
of doing something as simple as finding how many other
web pages link to each page in the web, a key metric in the
PageRank algorithm that Google uses for ranking search re-
sults. The answer, we show them, is Google’s distributed
platform MapReduce [4]. With its roots in functional pro-

gramming, MapReduce is actually easy to introduce to stu-
dents who are already familiar with Lisp in the form of
ACL2, so we can present relevant examples with actual code.
For example, WordCount is one of Google’s simple MapRe-

duce examples. In this case, the input to the map function
is a word appearing in some document and a partial count,
which can simply be 1. Our initial sample consists of each
word from the Gettysburg Address and an initial count of
1. In general, a main program would process a document
and produce such calls to map. The output of map is a
list of partial word counts. Only one word (the input word)
appears in this list, but the MapReduce framework requires
that the function return a more general list of values. The
inputs to the reduce function are a word and a list of all
the counts that were seen for this word. The output is a
list of words and their combined sums, computed using the
auxiliary function sumlist—again, there is only one word
in the list, although the extra container is required by the
MapReduce framework.

(wc-map w c) = [[w c]] {wc-map}
(wc-reduce w cs) = [[w (sumlist cs)]]

{wc-reduce}
(sumlist []) = 0 {sumlist-0}
(sumlist [x1 x2 ... xn]) = x1 + (sumlist [x2 ... xn])

{sumlist-0}

3. CONCORDANCE
Although our course is very different than the official pi-

lot courses for the Computer Science: Principles initiative,
we believe that it can be used in that setting [16]. In this
section, we explore how our course satisfies the theme and
topics covered in Computer Science: Principles (henceforth,
CSP).
For instance, the CSP contains seven “big ideas,” further

divided into specific learning objectives and evidence that
supporting them. The first big idea is that computing is
a creative activity, and the associated learning objectives
include understanding that tools and techniques from com-
puter science are used to create and analyze computing arti-
facts, but it goes beyond that. It also involves using comput-
ing as a means for creative expression and as a tool to build
artifacts that have some practical applications (even if only
for personal reasons.) This idea is central to our course (as to
many other introductory and advanced courses in computer
science.) Students have the opportunity to create several
programs and to analyze many of their properties, mostly
of the correctness flavor, e.g., “the circuit for a ripple-carry
adder correctly performs addition of n-bit binary integers.”
Students readily agree that writing programs that can per-
form specific tasks is an intensely creative process. More-
over, students are exposed to a number of different applica-
tion domains and they see how very practical problems, such
as solving arithmetic problems or indexing the world-wide
web, can be solved using computation.
The second big idea is abstraction, which comes in a vari-

ety of flavors. In our course, abstraction is one of the main
ideas. This is the reason why we present boolean expressions
and combinational digital circuits, and why we go on to build
machine representations of arithmetic. The students quickly
appreciate the benefit of abstraction in information hiding.
In addition, students explore properties of the various ab-
stractions and mappings between them, and they learn that

some properties of a complex model can be more easily ex-
plored by analyzing a simpler one.

The third big idea involves data. Students are expected to
use computers to explore data sets and understand how the
different ways in which the data can be represented affect the
exploration. Our course does expose students to this idea,
although we have not had the time to explore it as deeply
as other CSP courses. We do stress that the big difference
between toy applications and real-world applications is a
matter of scaling, both in data and program size. And we
show students examples of how large data sets are used and
processed, e.g., by Google and Facebook.

The next two big ideas encompass algorithms and pro-
gramming, and both of these are very much at the center of
our course. We describe algorithms using algebraic equal-
ities, and this is something that students start doing from
the first few classes. Students learn to develop their own
algorithms in different applications, and they learn to ex-
press these algorithms in ACL2, which as a programming
language is almost identical to the pure functional subset
of Common Lisp. Students also evaluate these algorithms,
mostly in terms of correctness, but also in terms of perfor-
mance, and they learn that some algorithms yield efficient
computations while other algorithms to the same problem
result in infeasible computations. This last point is espe-
cially central to the discussion of data structures, e.g, when
describing binary trees, balanced trees, and hashtables.

The sixth idea is concerned with the internet, and it in-
cludes knowing basic networking concepts, characteristics of
the internet, and basic concepts from cybersecurity. Our
course does address the internet, but not as much as other
CSP courses. In particular, we discuss the structure of the
web and the notion of indexing and ranking as it relates
to search engines. We also discuss different types of web
applications, including traditional Web 1.0 storefronts and
the more social Web 2.0 applications. In addition, we de-
scribe how web applications are implemented and discuss
specific components of the solution, such as web servers and
databases, but without going into any depth.

The seventh and final big idea concerns the global impact
of computers. This actually fits in very well with our ap-
proach, because the course is currently directed at honors
students, who bring a diverse background to the course, in-
cluding prior exposure to courses in the humanities. The
impact of computers, both good and bad, is a topic for dis-
cussion in class. More important, it is a topic that students
explore more fully in a research paper and class presentation.

4. OUTCOMES AND CONCLUSION
We have offered this course twice at the University of Ok-

lahoma, and it is scheduled for the current academic year.
As of this writing, we are also in the process of migrating the
course to the honors program at the University of Wyoming,
where it will be offered for the first time this year.

This is not an easy course. Although the material is
couched in the familiar framework of algebraic equations, it
includes topics in logic, digital circuits, programming, test-
ing, verification, and selected topics from data structures,
algorithms, and other areas of computer science. Neverthe-
less, the course is accessible to students who have had only
the standard college preparatory work, in particular high
school algebra.

What we found is that all students do well in the course,

despite their different backgrounds. The engineering stu-
dents outperformed the students in the arts and sciences,
but not by much. And the difference between students in
the arts and those in the sciences was negligible.
Students have been satisfied with the course. They found

the course challenging but rewarding. Their anonymous
comments suggest that they gained a fundamental under-
standing of what computers can actually do and how they
can do such things. This is, in our opinion, the basis for
computational thinking.
Because the course has been offered under the framework

of the honors program, we have another way to judge stu-
dent satisfaction. Every year, different honors courses are
proposed, and the students have an important voice in de-
termining which of these courses are actually offered. Our
course has been selected three times now, and placed promi-
nently as one of a handful of options that can satisfy one of
the major requirements for the honors program.
When we started this effort, we believed that it was pos-

sible to offer a course that could introduce students from
many different backgrounds, not just computer science ma-
jors, to formal ways of thinking about programs. We also
believed that such a course could demystify computers and
place them in a larger historical context. However, we were
concerned that students would find the mathematical rigor
to be too challenging. We can now report that the more op-
timistic viewpoint was the correct one, and we are convinced
this is due in large part to the presentation of computation
as a form of equational reasoning and the use of tools to aid
in proof discovery. Specifically, writing programs as simple
equations means that reasoning about those programs fol-
lows the exact same patterns and tools that students learned
in high school algebra (and that we reinforce in the early
parts of the course.) And by carefully choosing the pro-
grams that we ask students to write and the properties that
we ask them to verify, we can ensure that the proofs can be
found by the theorem prover ACL2 with only a minimum of
assistance from the students.
In the end, students learn much about software, how to

build it and how to think about it. The majority of stu-
dents will not take any further courses in computer science,
but they will take with them a new way of thinking about
computation to their diverse disciplines. And those students
who do end up pursuing advanced courses in computer sci-
ence will have a bird’s eye view of the field that we hope will
stay with them and give them a unique perspective as they
study the engineering details that are needed to construct
large-scale computing systems.

5. ACKNOWLEDGMENTS
The authors would like to thank the National Science

Foundation for supporting the work described in this paper
under Grant No. 1016532.

6. REFERENCES
[1] Hal Abelson, Ken Ledeen, and Harry Lewis. Blown to

Bits: Your Life, Liberty, and Happiness After the
Digital Explosion. Addison-Wesley Professional, 2008.

[2] Harsh Chamarthi, Peter Dillinger, Matt Kaufmann,
and Panagiotis Manolios. Interactive testing and
interactive theorem proving. In Proceedings of the
Tenth International Workshop of the ACL2 Theorem
Prover and its Applications (ACL2-2011), 2011.

[3] Stephen Cooper, Wanda Dann, and Randy Pausch.
Teaching objects-first in introductory computer
science. SIGCSE Bull., 35(1):191–195, Jan. 2003.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, Jan. 2008.

[5] Carl Eastlund. DoubleCheck your theorems. In
Proceedings of the Eighth International Workshop on
the ACL2 Theorem Prover and its Applications
(ACL2-09), 2009.

[6] Carl Eastlund, Dale Vaillancourt, and Matthias
Felleisen. ACL2 for freshmen: First experiences. In
Proceedings of the Seventh International Workshop of
the ACL2 Theorem Prover and its Applications
(ACL2-2007), 2007.

[7] Matthias Felleisen. The first year.
http://www.ccs.neu.edu/home/matthias/

Presentations/FirstYear/first%20year.pdf.

[8] Matthias Felleisen, Robert Bruce Findler, Matthew
Flatt, and Shriram Krishnamurthi. How to Design
Programs: An Introduction to Programming and
Computing. MIT Press, Boston, 2001.

[9] Brian Harvey and Jens Mönig. Bringing “no ceiling” to
scratch: Can one language serve kids and computer
scientists? In Constructionism 2010 (Paris), 2010.

[10] Yu-Chang Hsu, Kerry Rice, and Lisa Dawley.
Empowering educators with google’s android app
inventor: An online workshop in mobile app design.
British Journal of Educational Technology,
43(1):E1–E5, Jan. 2012.

[11] Joint Task Force on Computing Curricula. Computing
curricula 2001 computer science. Journal of
Educational Resources in Computing (JERIC), 1(3es),
Sept. 2001.

[12] Matt Kaufmann, Panagiotis Manolios, and J
Strother Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, 2000.

[13] Takayuki Kimura. Recursive programming in english
for freshmen. SIGCSE Bull., 9(1):129–132, Feb. 1977.

[14] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[15] The College Board. Computer science: Principles.
http://www.collegeboard.com/prod_downloads/

computerscience/ComputationalThinkingCS_

Principles.pdf, 2011.

[16] The College Board. CS principles pilot sites.
http://www.csprinciples.org/home/pilot-sites, 2012.

[17] Franklyn Turbak, Constance Royden, Jennifer
Stephan, and Jean Herbst. Teaching recursion before
loops in CS1. The Journal of Computing in Small
Colleges, 14(4):86–101, 1999.

